全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electron Density Response to Phonon Dynamics in MgB2: An Indicator of Superconducting Properties

DOI: 10.4236/mnsms.2018.82002, PP. 21-46

Keywords: Electron Density, MgB2, Phonon Dispersion, Kohn Anomaly, Phonon Dynamics, Superconducting Transition Temperature, Superconductivity Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

Electron density differences resulting from atom displacement patterns aligned with phonon modes in MgB2 have been calculated using density functional theory (DFT). The extent of phonon anomalies, identified as indicators of the superconducting transition temperature, Tc, under a range of conditions in AlB2-type structures, reduce as boron atoms are displaced from their equilibrium positions along E2g mode directions. The Fermi energy for displacements along the directions of the E2g phonon mode accounts for changes in the covalent B-B bond electronic charge density. We applied differential atom displacements to show that the shifted σ band structure associated with the light effective mass became tangential to the Fermi level and that the Fermi surface undergoes a topological transition at a critical relative displacement of ~0.6% of the boron atoms from equilibrium. The difference in Fermi energies at this critical displacement and at the equilibrium position correspond to the superconducting energy gap. The net volume between tubular σ surfaces in reciprocal space correlated with the depth of the phonon anomaly and, by inference, it is a key to an understanding of superconductivity. This ab initioapproach offers a phenomenological understanding of the factors that determine

References

[1]  Kohn, W. (1999) Nobel Lecture: Electronic Structure of Matter—Wave Functions and Density Functions. Reviews of Modern Physics, 71, 1253-1266.
https://doi.org/10.1103/RevModPhys.71.1253
[2]  An, J.M. and Pickett, W.E. (2001) Superconductivity of MgB2: Covalent Bonds Driven Metallic. Physical Review Letters, 86, 4366-4369.
https://doi.org/10.1103/PhysRevLett.86.4366
[3]  Geballe, T.H., Hammond, R.H. and Wu, P.M. (2015) What Tc Tells. Physica C: Superconductivity and Its Applications, 514, 9-16.
https://doi.org/10.1016/j.physc.2015.02.009
[4]  Alarco, J.A., Chou, A., Talbot, P.C. and Mackinnon, I.D.R. (2014) Phonon Modes of MgB2: Super-Lattice Structures and Spectral Response. Physical Chemistry Chemical Physics, 16, 24443-24456.
https://doi.org/10.1039/C4CP03449J
[5]  Alarco, J.A., Talbot, P.C. and Mackinnon, I.D.R. (2015) Phonon Anomalies Predict Superconducting Tc for AlB2-Type Structures. Physical Chemistry Chemical Physics, 17, 25090-25099.
https://doi.org/10.1039/C5CP04402B
[6]  Alarco, J.A., Talbot, P.C. and Mackinnon, I.D.R. (2017) Phonon Dispersion Models for MgB2 with Application of Pressure. Physica C: Superconductivity and Its Applications, 536, 11-17.
[7]  Mackinnon, I.D.R., Talbot, P.C. and Alarco, J.A. (2017) Phonon Dispersion Anomalies and Superconductivity in Metal Substituted MgB2. Computational Materials Science, 130, 191-203.
https://doi.org/10.1016/j.commatsci.2017.01.011
[8]  Zheng, J.-C. and Zhu, Y. (2006) Searching for a Higher Superconducting Transition Temperature in Strained MgB2. Physical Review B, 73, Article ID: 024509.
https://doi.org/10.1103/PhysRevB.73.024509
[9]  Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. and Akimitsu, J. (2001) Superconductivity at 39K in Magnesium Diboride. Nature, 410, 63-64.
https://doi.org/10.1038/35065039
[10]  Kunc, K., Loa, I., Syassen, K., Kremer, R.K. and Ahn, K. (2001) MgB2 under Pressure: Phonon Calculations, Raman Spectroscopy, and Optical Reflectance. Journal of Physics: Condensed Matter, 13, 9945-9962.
https://doi.org/10.1088/0953-8984/13/44/310
[11]  Heid, R., Bohnen, K.-P. and Renker, B. (2002) Electron-Phonon Coupling and Superconductivity in MgB2 and Related Diborides. Advances in Solid State Physics, 42, 293-305.
https://doi.org/10.1007/3-540-45618-X_23
[12]  Baron, A.Q.R., Uchiyama, H., Tsutsui, S., Tanaka, Y., Ishikawa, D., John, J.P., Sutter, P., Lee, S., Tajima, S., Heid, R. and Bohnen, K.-P. (2007) Review: Phonon Spectra in Pure and Carbon Doped MgB2 by Inelastic X-Ray Scattering. Physica C: Superconductivity, 456, 83-91.
https://doi.org/10.1016/j.physc.2007.01.028
[13]  Kortus, J. (2007) Current Progress in the Theoretical Understanding of MgB2. Physica C: Superconductivity, 456, 54-62.
https://doi.org/10.1016/j.physc.2007.01.023
[14]  Alarco, J.A., Talbot, P.C. and Mackinnon, I.D.R. (2018) A Complete and Accurate Description of Superconductivity of AlB2-Type Structures from Phonon Dispersion Calculations. Journal of Superconductivity and Novel Magnetism, 31, 727-731.
[15]  Innocenti, D., Valletta, A. and Bianconi, A. (2011) Shape Resonance at a Lifshitz Transition for High Temperature Superconductivity in Multiband Superconductors. Journal of Superconductivity and Novel Magnetism, 24, 1137-1143.
https://doi.org/10.1007/s10948-010-1096-y
[16]  Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K. and Payne, M.C. (2005) First Principles Methods Using CASTEP. Zeitschrift für Kristallographie—Crystalline Materials, 220, 567-570.
https://doi.org/10.1524/zkri.220.5.567.65075
[17]  Refson, K., Tulip, P.R. and Clark, S.J. (2006) Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Physical Review B, 73, Article ID: 155114.
https://doi.org/10.1103/PhysRevB.73.155114
[18]  Hinks, D., Claus, H. and Jorgensen, J. (2001) The Complex Nature of Superconductivity in MgB2 as Revealed by the Reduced Total Isotope Effect. Nature, 411, 457-460.
https://doi.org/10.1038/35078037
[19]  Lee, S., Mori, H., Masui, T., Eltsev, Y., Yamamoto, A. and Tajima, S. (2001) Growth, Structure Analysis and Anisotropic Superconducting Properties of MgB2 Single Crystals. Journal of the Physical Society of Japan, 70, 2255-2258.
https://doi.org/10.1143/JPSJ.70.2255
[20]  Becke, A.D. and Edgecombe, K.E. (1990) A Simple Measure of Electron Localization in Atomic and Molecular Systems. The Journal of Chemical Physics, 92, 5397-5403.
https://doi.org/10.1063/1.458517
[21]  (2002) Electron Localizability.
http://www2.cpfs.mpg.de/ELF/index.php
[22]  Liu, A.Y., Mazin, I.I. and Kortus, J. (2001) Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps. Physical Review Letters, 87, Article ID: 087005.
https://doi.org/10.1103/PhysRevLett.87.087005
[23]  Kortus, J.
http://www.physik.tu-freiberg.de/~kortus/kortus-research.html
[24]  Yildirim, T.
http://www.ncnr.nist.gov/staff/taner/mgb2/
[25]  Bugoslavsky, Y., Miyoshi, Y., Perkins, G., Berenov, A., Lockman, Z., MacManus-Driscoll, J., Cohen, L., Caplin, A., Zhai, H. and Paranthaman, M. (2002) Structure of the Superconducting Gap in MgB2 from Point-Contact Spectroscopy. Superconductor Science and Technology, 15, 526.
https://doi.org/10.1088/0953-2048/15/4/308
[26]  Buzea, C. and Yamashita, T. (2001) Topical Review—Review of the Superconducting Properties of MgB2. Superconductor Science and Technology, 14, R115-R146.
https://doi.org/10.1088/0953-2048/14/11/201
[27]  Choi, H.J., Roundy, D., Sun, H., Cohen, M.L. and Louie, S.G. (2002) The Origin of the Anomalous Superconducting Properties of MgB2. Nature, 418, 758-760.
https://doi.org/10.1038/nature00898
[28]  Kong, Y., Dolgov, O.V., Jepsen, O. and Andersen, O.K. (2001) Electron-Phonon Interaction in the Normal and Superconducting States of MgB2. Physical Review B, 64, Article ID: 020501.
[29]  Alarco, J.A., Talbot, P.C. and Mackinnon, I.D.R. (2014) Coherent Phonon Decay and the Boron Isotope Effect for MgB2. Physical Chemistry Chemical Physics, 16, 25386-25392.
https://doi.org/10.1039/C4CP04114C
[30]  Vinod, K., Kumar, R.G.A. and Syamaprasad, U. (2007) Prospects for MgB2 Superconductors for Magnet Application. Superconductor Science and Technology, 20, R1-R13.
https://doi.org/10.1088/0953-2048/20/1/R01
[31]  D’Astuto, M., Heid, R., Renker, B., Weber, F., Schober, H., De la Pena-Seaman, O., Karpinski, J., Zhigadlo, N.D., Bossak, A. and Krisch, M. (2016) Non-Adiabatic Effects in the Phonon Dispersion of Mg1-xAlxB2. Physical Review B, 93, 1-5.
[32]  Born, M. and Oppenheimer, R. (1927) Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 457-484.
https://doi.org/10.1002/andp.19273892002
[33]  Schutte, C.J.H. (1971) The Adiabatic Born-Oppenheimer Approximation. Quarterly Reviews, Chemical Society, 25, 393-405.
https://doi.org/10.1039/QR9712500393
[34]  Boeri, L., Bachelet, G.B., Cappelluti, E. and Pietronero, L. (2002) Small Fermi Energy and Phonon Anharmonicity in MgB2 and Related Compounds. Physical Review B, 65, Article ID: 214501.
https://doi.org/10.1103/PhysRevB.65.214501
[35]  Uchiyama, H., Shen, K.M., Lee, S., Damascelli, A., Lu, D.H., Feng, D.L., Shen, Z.-X. and Tajima, S. (2002) Electronic Structure of MgB2 from Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 88, Article ID: 157002.
https://doi.org/10.1103/PhysRevLett.88.157002
[36]  Kang, W.N., Jung, C.U., Kim, K.H., Park, M.-S., Lee, S.Y., Kim, H.-J., Choi, E.-M., Kim, K.H., Kim, M.-S. and Lee, S.-I. (2001) Hole Carrier in MgB2 Characterized by Hall Measurements. Physical Review Letters, 79, 982-984.
https://doi.org/10.1063/1.1392979
[37]  Kang, W.N., Kim, H.-J., Choi, E.-M., Kim, H.J., Kim, K.H.P., Lee, H.S. and Lee, S.-I. (2002) Hall Effect in c-axis-oriented MgB2 Thin Films. Physical Review B, 65, Article ID: 134508.
https://doi.org/10.1103/PhysRevB.65.134508
[38]  Suzuki, S., Higai, S.I. and Nakao, K. (2001) Two-Dimensional σ-Hole Systems in Boron Layers: A First-Principles Study on Mg1-xNaxB2 and Mg1-xAlxB2. Journal of the Physical Society of Japan, 70, 1206-1209.
https://doi.org/10.1143/JPSJ.70.1206
[39]  Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics. Saunders, Philadelphia.
[40]  Calandra, M., Lazzeri, M. and Mauri, F. (2007) Review: Anharmonic and Non-Adiabatic Effects in MgB2: Implications for the Isotope Effect and Interpretation of Raman Spectra. Physica C: Superconductivity, 456, 38-44.
https://doi.org/10.1016/j.physc.2007.01.021
[41]  Bardeen, J. (1951) Electro-Vibration Interactions and Superconductivity. Reviews of Modern Physics, 23, 261-270.
https://doi.org/10.1103/RevModPhys.23.261
[42]  de la Penha, O., Aguayo, A. and de Coss, R. (2002) Effects of Al Doping on the Structural and Electronic Properties of Mg1-xAlxB2. Physical Review B, 66, Article ID: 012511.
[43]  Bianconi, A. (2005) Feshbach Shape Resonance in Multiband Superconductivity in Heterostructures. Journal of Superconductivity, 18, 626-636.
https://doi.org/10.1007/s10948-005-0047-5
[44]  Johannes, M.D. and Mazin, I.I. (2008) Fermi Surface Nesting and the Origin of Charge Density Waves in Metals. Physical Review B, 77, Article ID: 165135.
https://doi.org/10.1103/PhysRevB.77.165135
[45]  Jorgensen, J.D., Hinks, D.G. and Short, S. (2001) Lattice Properties of MgB2 versus Temperature and Pressure. Physical Review B, 63, Article ID: 224522.
[46]  Lortz, R., Wang, Y., Abe, S., Meingast, C., Paderno, Y.B., Filippov, V. and Junod, A. (2005) Specific Heat, Magnetic Susceptibility, Resistivity and Thermal Expansion of the Superconductor ZrB12. Physical Review B, 72, Article ID: 024547.
https://doi.org/10.1103/PhysRevB.72.024547
[47]  Anshukova, N.V., Bulychev, B.M., Golovashkin, A.I., Ivanova, L.I., Krynetskii, I.B., Minakov, A.A. and Rusakov, A.P. (2003) Anomalous Low-Temperature Behavior of the Thermal Characteristics of MgB2. Journal of Experimental and Theoretical Physics, 97, 70-77.
https://doi.org/10.1134/1.1600798
[48]  Shi, L., Zhang, H., Chen, L. and Feng, Y. (2004) The Raman Spectrum and Lattice Parameters of MgB2 as a Function of Temperature. Journal of Physics: Condensed Matter, 16, 6541-6550.
https://doi.org/10.1088/0953-8984/16/36/019
[49]  Wu, S.Y., Shih, P.-H., Ji, J.-Y., Chan, T.-S. and Yang, C.C. (2016) Direct Observation of Charge Re-Distribution in a MgB2 Superconductor. Superconductor Science and Technology, 29, Article ID: 045001.
https://doi.org/10.1088/0953-2048/29/4/045001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133