全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Detection  2018 

Study on the Theoretical Limitation of the Mid-Infrared PbSe N+-P Junction Detectors at High Operating Temperature

DOI: 10.4236/detection.2018.61001, PP. 1-16

Keywords: PbSe, Lifetime, R0A, Detectivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper provides a theoretical study and calculation of the specific detectivity-D* limit of photovoltaic (PV) mid-wave infrared (MWIR) PbSe n+-p junction detectors operating at both room temperature and TE-cooled temperature. For a typical PbSe p-type doping concentration of 2 × 1017 cm-3 and with high quantum efficiency, the D* limits of a photovoltaic PbSe n+-p junction detector are shown to be 2.8 × 1010 HZ1/2/W and 3.7 × 1010 HZ1/2/W at 300 K and 240 K, with cut-off wavelength of 4.5 μm and 5.0 μm, respectively. It is almost one magnitude higher than the current practical MWIR PV detector. Above 244 K, the detector is Johnson noise limited, and below 191 K the detector reaches background limited infrared photodetector (BLIP) D*. With optimization of carrier concentration, D* and BLIP temperature could be further increased.

References

[1]  Norton, P.R. (1991) Infrared Image Sensors. Optical Engineering, 30, 1649-1663.
https://doi.org/10.1117/12.56001
[2]  Rogalski, A. (2001) Infrared Detectors. 2 Edition, Taylor and Francis Group, LLC and. CRC Press, New York.
[3]  Tennant, W.E. (2011) Limits of Infrared Imaging. International Journal of High Speed Electronics and Systems, 20, 529-539.
https://doi.org/10.1142/S0129156411006829
[4]  De Wames, R.E. and Pellegrino, J.G. (2012) Electrical Characteristics of MOVPE grown MWIR N+p(As)HgCdTe Heterostructure Photodiodes Build on GaAs Substrates. In: Andresen, B.F., Fulop, G.F. and Norton, P.R., Eds., Infrared Technology and Applications XXXVIII, Proceeding of SPIE Vol. 8353 83532K-1, Baltimore.
[5]  Klann, R., Hofer, T., Buhleier, R., Elsaesser, T. and Tomm, J.W. (1995) Fast Recombination Processes in Lead Chalcogenide Semiconductors Studied via Transient Optical Nonlinearities. Journal of Applied Physics, 77, 277.
https://doi.org/10.1063/1.359388
[6]  Findlay, P.C., Pidgeon, C.R., Murdin, B.N., van der Meer, A.F.G., Langerak, A.F.G., Ciesla, C.M., Oswald, J., Springholz, G. and Bauer, G. (1998) Auger Recombination Dynamics of Lead Salts under Picosecond Free-Electron-Laser Excitation. Physical Review B, 58, 12908.
https://doi.org/10.1103/PhysRevB.58.12908
[7]  Ziep, O., Mocker, O., Genzow, D. and Hermann, K.H. (1978) Auger Recombination in PbSnTe-Like Semiconductors. Physica Status Solidi B, 90, 197.
https://doi.org/10.1002/pssb.2220900121
[8]  Yongdale, E.R., Meyer, J.R., Hoffman, C.A., Bartoli, F.J., Grein, C.H., Young, P.M., Ehrenreich, H., Miles, R.H. and Chow, D.H. (1994) Auger Lifetime Enhancement in InAs-Ga1-xInxSb Superlattices. Applied Physics Letters, 64, 3160.
https://doi.org/10.1063/1.111325
[9]  Meyer, J.R., Felix, C.L., Bewley, W.W., Vurgaftman, I., Aifer, E.H., Olafsen, L.J., Lindle, J.R., Hoffman, C.A., Yang, M.-J., Bennett, B.R., Shanabrook, B.V., Lee, H., Lin, C.-H., Pei, S.S. and Miles, R.H. (1998) Auger Coefficients in Type-II InAs/Ga1-xInxSb Quantum Wells. Applied Physics Letters, 73, 2857.
https://doi.org/10.1063/1.122609
[10]  Young, P.M., Grein, C.H., Ehrenreich, H. and Miles, R.H. (1993) Temperature Limits on Infrared Detectivities of InAs/InxGa1-xSb Superlattices and Bulk HgxCd1-xTe. Journal of Applied Physics, 74, 4774.
https://doi.org/10.1063/1.354348
[11]  Ciesla, C.M., Murdin, B.N., Phillips, T.J., White, A.M., Beattie, A.R., Langerak, G.M., Elliott, C.T., Pidgeon, C.R. and Sivananthan, S. (1997) Auger Recombinatin Dynamics of Hg0.795Cd0.205Te in the High Excitation Regime. Applied Physics Letters, 71, 3160.
https://doi.org/10.1063/1.119588
[12]  Beattie, A.R. and White, A.M. (1996) An Analytic Approximation with a Wide Range of Applicabilty for Electron Initiated Auger Transitions in Narrow-Gap Semiconductors. Journal of Applied Physics, 79, 802.
https://doi.org/10.1063/1.360828
[13]  Qiu, J., Weng, B., Yuan, Z. and Shi, Z. (2013) Study of Sensitization Process on Mid-Infrared Uncooled PbSe Photoconductive Detectors Leads to High Detectivity. Journal of Applied Physics, 113, 103102.
https://doi.org/10.1063/1.4794492
[14]  Weng, B., Qiu, J., Yuan, Z., Larson, P., Strout, G. and Shi, Z. (2014) CdS/PbSe Heterojunction for High Temperature Mid-Infrared Photovoltaic Detector Applications. Applied Physics Letters, 104, 121111.
https://doi.org/10.1063/1.4869752
[15]  Zhao, L., Qiu, J., Weng, B., Chang, C., Yuan, Z. and Shi, Z. (2014) Understanding Sensitization Behavior of Lead Selenide Photoconductive Detectors by Charge Separation Model. Journal of Applied Physics, 115, Article ID: 084502.
https://doi.org/10.1063/1.4867038
[16]  Green, K., Yoo, S.-S. and Kauffman, C. (2014) Lead Salt TE-Cooled Imaging Sensor Development. Proceedings of the SPIE, 9070, 90701G.
[17]  Driggers, R. (2014) What’s New in Infrared Systems?
http://spie.org/x106781.xml
https://doi.org/10.1117/2.4201404.12
[18]  Clark Jones, R. (1953) Performance of Detectors for Visible and Infrared Radiation. Advances in Electronics and Electron Physics, 5, 1-96.
[19]  Rogalski, A. (2011) Infrared Detectors. 2nd Edition, Taylor and Francis Group and CRC Press, Boca Raton, 34-35.
[20]  Buckingham, M.J. and Faulkner, E.A. (1974) The Theory of Inherent Noise in p-n Junction Diodes and Bipolar Transistors. Radio and Electronic Engineer, 44, 125-140.
https://doi.org/10.1049/ree.1974.0036
[21]  Johnson, M.R., Chapman, R.A. and Wrobel, J.S. (1975) Detectivity Limits for Diffused Junction PbSnTe Detectors. Infrared Physics, 15, 317-329.
https://doi.org/10.1016/0020-0891(75)90050-0
[22]  Rogalski, A., Adamiec, K. and Rutkowski, J. (2000) Narrow Gap Semiconductor Photodiodes.
[23]  Preier, H. (1979) Recent Advances in Lead-Chalcogenide Diode Lasers. Applied Physics, 20, 189-206.
https://doi.org/10.1007/BF00886018
[24]  Rogalski, A. (2011) Infrared Detectors. CRC Press, Boca Raton.
[25]  Schlichting, U. and Gobrecht, K.H. (1973) The Mobility of Free Carriers in PbSe Crystals. Journal of Physics and Chemistry of Solids, 34, 753-758.
https://doi.org/10.1016/S0022-3697(73)80183-0
[26]  Lu, X. and Shi, Z. (2005) Theoretical Investigations of [110] IV-VI Lead Salt Edge-Emitting Lasers. IEEE Journal of Quantum Electronics, 41, 308-315.
https://doi.org/10.1109/JQE.2004.841607
[27]  Rogalski, A., Ciupa, R. and Zogg, H. (1995) Solid State Crystals: Materials Science and Applications. International Society for Optics and Photonics, Bellingham.
[28]  Parrot, J.E. (1993) Radiative Recombination and Photon Recycling in Photovoltaic Solar Cells. Solar Energy Materials and Solar Cells, 30, 221-231.
https://doi.org/10.1016/0927-0248(93)90142-P
[29]  Weiser, K., Ribak, E., Klein, A. and Ainhorn, M. (1981) Recombination of Photocarriers in Lead-Tin Telluride. Infrared Physics, 21, 149-154.
https://doi.org/10.1016/0020-0891(81)90022-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413