全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Polyvinyl Pyrollidone Coated Sodium Borohydride Stabilized Particle Colloidal Silver Fresh None Filtered and Nano Filtered Solution Made up of Magnetic Stirring and Cooling Method

DOI: 10.4236/wjnse.2018.81001, PP. 1-31

Keywords: Intensity Distribution, Auto Correlation Function, DelsaTM Nano Beckman, Coulter Machine, Poly Dispersity Index, Refractive Index, Viscosity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Characterization is absolutely necessary and is a must in order to understand and estimate different silver nanoparticle (nm) size in specific group wise manner which corresponds to group wise in number & sizes, and their importance and effect on biological tissue and organs with agglomeration for nano toxicological studies in environments, the acute toxicity of colloidal silver nano particles (AgNps) were studied in fresh dissected tissues of Swiss Albino mice and their fetuses. In this manuscript, an attempt is made to demonstrate the synthesis and characterization of silver nano particles with a wide range of sizes (from 2.75 nm up to 1908.2 nm in radius) by reducing silver nitrate powder with polyvinyl pyrollidone in aqueous solutions in the presence of a sodium borohydride stabilizer. The resulting particles were found spherical aggregates with a rough surface and poly dispersity index below 18.26% (>0.783 PDI). The particle optical, cumulative, diluents and electrical conductivity properties were examined by dynamic light scattering and zeta potential but morphology was evaluated after examination by transmission electron microscopy & image-j. Silver nanoparticles were directly coated with polyvinyl pyrollidone with a sodium borohydride stabilizer. Optical properties on a single-particle level were studied by means of auto correlation function measurements. The effective poly dispersity index of the charged silver nanoparticles was low enough to form a colloidal crystal at low ionic strength. Colloidal form is found more toxic than suspended particles in 1.5 molar sodium chloride solution; this shows increase of silver nanoparticles size due to agglomeration, will reduce the toxicity but increase teratogenicity.

References

[1]  Gates, B.C., Guezi, L. and Knosinger, H. (Eds.) (1986) Metal Clusters in Catalysis. Hand Book of Chemistry & Physics. 76th Edition, Elsevier, Amsterdam.
[2]  Jana, N.R., Sau, T.K. and Pal, T. (1999) Growing Small Silver Particle as Redox Catalyst. Journal of Physical Chemistry B, 103, 115-121.
[3]  Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. and Mirkin, C.A. (1997) Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependant Optical Properties of Gold Nanoparticles. Science, 277, 1078-1081.
[4]  Olsen, A.W. and Kafafi, Z.H. (1991) Gold Cluster-Laden Polydiacetylenes: Novel Material for Nonlinear Optics. Journal of the American Chemical Society, 113, 7758-7760.
[5]  Ganeev, R.A., Ryasnyanskii, A.I., Kodirov, M.K., Kamalov, S.R. and Usmanov, T. (2001) Nonlinear Optical Characteristics of Colloidal Solutions of Metals. Journal of Optics and Spectroscopy, 90, 568-573.
https://doi.org/10.1134/1.1366752
[6]  Ganeev, R.A., Ryasnyansky, A.I., Kamalov, S.R., Kodirov, N.K. and Usmanov, T. (2001) Nonlinear Susceptibilities Absorption, Coefficients and Refractive Indices of Colloidal Metal. Journal of Physics D: Applied Physics, 34, 1602-1611.
https://doi.org/10.1088/0022-3727/34/11/308
[7]  Kambhampati, D.K. and Knoll, W. (1999) Surface Plasmon Optical Techniques. Current Opinion in Colloid Interface Science. 4, 273-280.
https://doi.org/10.1016/S1359-0294(99)90008-0
[8]  Nie, S.M. and Emery, S.R. (1997) Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 275, 1102-1106.
[9]  Tominaga, J., Mihalcea, C., Buchel, D., Fukuda, H., Nakano, T. and Atoda, N. (2001) Local Plasmon Photonic Transistor. Journal of Applied Physics Letter, 78, 2417.
https://doi.org/10.1063/1.1367905
[10]  Moroz, A. (1999) Three-Dimensional Complete Photonic-Band-Gap Structures in the Visible. Journal of Physical Review Letters, 83, 5274.
https://doi.org/10.1103/PhysRevLett.83.5274
[11]  Moroz, A. (2000) Photonic Crystals of Coated Metallic Spheres. Europhysics Letters, 50, 466.
https://doi.org/10.1209/epl/i2000-00292-4
[12]  Zhang, W.Y., Lei, X.Y., Zheng, D.G., Tam, W.Y., Chan, C.T., Ping, S. and Wang, Z.L. (2000) Robust Phonotic Band Gap from Tunable Scatters. Journal of Physical Review Letters, 84, 2853.
[13]  El-Kady, I., Sigalas, M.M., Biswas, R., Ho, K.M. and Soukoulis, C.M. (2000) Metallic Phonotic Crystal at Optical Wavelengths. Journal of Physical Review B, 62, 15299-15302.
[14]  Wang, Z., Chan, C.T., Zhang, W.Y., Chen, Z., Ming, N.B. and Sheng, P. (2001) Facile Method to Coat Polystyrene and Silica Colloids with Metal. Journal of Physical Review B, 64, 108.
[15]  Goia, D.V. and Matijevic, E. (1998) Preparation of Monodispersed Metal Particles. New Journal of Chemistry, 22, 1203-1215.
https://doi.org/10.1039/a709236i
[16]  Adair, J.H., Li, T., Kido, T., Havey, K., Moon, J., Mecholsky, J., Morrene, A., Talham, D.R., Ludwig, M.H. and Wang, L. (1998) Recent Developments in the Preparation and Properties of Nano-Meter Size Spherical and Platelet-Shaped Particles and Composite Particles. Materials Science and Engineering: R: Reports, 23, 139-242.
https://doi.org/10.1016/S0927-796X(98)80001-6
[17]  Adair, J.H. and Suvaci, E. (2000) Morphological Control of Particles. Current Opinion in Colloid Interface Science, 5, 160-167.
https://doi.org/10.1016/S1359-0294(00)00049-2
[18]  Egorova, E.M. and Revina, A.A. (2000) Synthesis of Metallic Nanoparticles in Reverse Micelles in the Presence of Querectin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168, 87-96.
https://doi.org/10.1016/S0927-7757(99)00513-0
[19]  Taleb, A., Petit, C. and Pileni, M.P. (1997) Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization. Chemical Materials, 9, 950-959.
https://doi.org/10.1021/cm960513y
[20]  Andrievsky, S.M., Kovtyukh, V.V., Luck, R.E., Lépine, J.R.D., Bersier, D., Maciel, W.J., Barbuy, B., Klochkova, V.G., Panchuk, V.E. and Karpischek, R.U. (2002) Using Cepheids to Determine the Galactic Abundance Gradient. I. The Solar Neighborhood. Journal of Astronomy and Astrophysics, 381, 32-50.
https://doi.org/10.1051/0004-6361:20011488
[21]  Pesika, N.S., Stebe, K.J. and Searson, P.C. (2003) Relationship between Absorbance Spectra and Particle Size Distributions for Quantum-Sized Nanocrystals. Journal of Physical Chemistry B, 107, 10412-10415.
https://doi.org/10.1021/jp0303218
[22]  Yamamoto, Y., Kiyoi, H. and Nakano, Y. (2001) Activating Mutation of D835 within the Activation Loop of FLT3 in Human Hematologic Malignancies. Blood, 97, 2434-2439.
https://doi.org/10.1182/blood.V97.8.2434
[23]  Rabinski, G. and Thomas, D. (2004) Dynamic Digital Image Analysis: Emerging Technology for Particle Characterization. Journal of Water Science and Technology, 50, 19-26.
[24]  Jose-Yacaman, M., Marin-Almazo, M. and Ascencio, J.A. (2001) High Resolution TEM Studies on Palladium Nanoparticles. Journal of Molecular Catalysis A-Chemical, 173, 61-74.
https://doi.org/10.1016/S1381-1169(01)00145-5
[25]  Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. and Mulfinger, L. (2007) Synthesis and Study of Silver Nanoparticles. Journal of Chemical Education, 84, 322-325.
[26]  Berne, B.J. and Pecora, R. (2000) Dynamic Light Scattering. Courier Dover Publications, ISBN0-486-41155-9.
[27]  Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to Image-J: 25 Years of Image Analysis. Journal of Nature Methods, 9, 671-675.
https://doi.org/10.1038/nmeth.2089
[28]  Reimer, L. (1997) Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Optical Science, Vol. 36, Chapter 9, 4th Edition, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-14824-2
[29]  Matijevic, E. (1993) Preparation and Properties of Uniform Size Colloids. Journal of Chemistry of Materials, 5, 412-426.
https://doi.org/10.1021/cm00028a004
[30]  Matijevic, E. (1994) Uniform Inorganic Colloid Dispersions. Achievements and Challenges. Langmuir, 10, 8-16.
https://doi.org/10.1021/la00013a003
[31]  Mulvaney, P., Giersig, M. and Henglein, A. (1993) Electrochemistry of Multilayer Colloids: Preparation and Absorption Spectrum of Gold-Coated Silver Particles. Journal of Physical Chemistry, 97, 7061-7064.
https://doi.org/10.1021/j100129a022
[32]  Torigoe, K., Nakajima, Y. and Esumi, K. (1993) Encyclopedia of Surface and Colloid Science. 2nd Edition, Preparation and Characterization of Colloidal Silver-Platinum alloys. Journal of Physical Chemistry, 97, 8304-8309.
https://doi.org/10.1021/j100133a029
[33]  Link, S., Wang, Z.L. and El-Sayed, M.A. (1999) Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on their Composition. Journal of Physical Chemistry B, 103, 3529-3533.
https://doi.org/10.1021/jp990387w
[34]  Henglein, A. and Giersig, M. (1999) Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. Journal of Physical Chemistry B, 103, 9533-9539.
https://doi.org/10.1021/jp9925334
[35]  Wang, W., Efrima, S. and Regev, O. (1998) Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases. Langmuir, 14, 602-610.
https://doi.org/10.1021/la9710177
[36]  Ohmori, M. and Matijevic, E.J. (1993) Preparation and Properties of Uniform Coated Inorganic Colloidal Particles: 8. Silica on Iron. Journal of Colloidal Interface Science, 160, 288-292.
https://doi.org/10.1006/jcis.1993.1398
[37]  Liz-Marzan, L.M. and Philipse, A.P.J. (1995) Synthesis and Optical Properties of Gold-Labeled Silica Particles. Journal of Colloidal Interface Science, 176, 459-466.
https://doi.org/10.1006/jcis.1995.9945
[38]  Liz-Marzan, L.M., Giersig, M. and Mulvaney, P. (1996) Synthesis of Nano Sized Gold-Silica Core-Shell Particles. Langmuir, 12, 4329-4335.
https://doi.org/10.1021/la9601871
[39]  Liz-Marzan, L.M., Giersig, M. and Mulvaney, P. (1996) Homogeneous Silica Coating of Vitreophobic Colloids. Journal of Chemical Communications, 0, 731-732.
https://doi.org/10.1039/CC9960000731
[40]  Giersig, M., Ung, T., Liz-Marzan, L.M. and Mulvaney, P. (1997) Direct Observation of in Silica Coated Gold and Silver Nanoparticle. Preparation of Advanced Material, 9, 570-575.
[41]  Ung, T., Liz-Marzan, L.M. and Mulvaney, P. (1998) Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reaction. Langmuir, 14, 3740-3748.
https://doi.org/10.1021/la980047m
[42]  Yang, C.S., Liu, Q., Kauzlarich, S.M. and Phillips, B. (2000) Synthesis and Characterization of Sn/R, Sn/Si-R, and Sn/SiO2 Core/Shell Nanoparticles. Journal of Chemistry of Materials, 12, 983-988.
https://doi.org/10.1021/cm990529z
[43]  Hardikar, V.V. and Matijevic, E.J. (2000) Coating of Nano Size Silver Particles with Silica. Journal of Colloid Interface Science, 221, 133-136.
https://doi.org/10.1006/jcis.1999.6579

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413