全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Positioning  2018 

Quantum Theory of Disturbance and Delay of GPS Signals in D and E Atmospheric Layers: An Introduction

DOI: 10.4236/pos.2018.92002, PP. 13-22

Keywords: GPS, D and E Atmospheric Layers, Rydberg Complexes, Non-Equilibrium Plasma

Full-Text   Cite this paper   Add to My Lib

Abstract:

GPS signals play a very important role in the modern industry, science, tourism, military and domestic operations. However, GPS signals are not free from some mistakes caused by disturbances appearing in D and E layers of the atmosphere. A quantum approach is proposed to the theory of propagation of a satellite GPS signal through the D and E layers of the atmosphere, which reduces to the problem of scattering of photons moving in the electromagnetic field of a signal in Rydberg complexes formed in a two-temperature non-equilibrium plasma. The processes of creation of additional photons as a result of stimulated emission and resonance scattering of photons are considered. It is shown that the first process leads to a direct increase in the power of the received signal, and the second to a shift in the signal carrier frequency and the time delay of its propagation. This occurs because of the scattering of the Rydberg electron by the ion core and the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions.

References

[1]  Zumberg, J.F., Heftin, M.B., Jeffersonet, D.C., et al. (1997) Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. Journal of Geophys. Research, 102, 5005-5017.
https://doi.org/10.1029/96JB03860
[2]  Wang, W.J., Hsu, T.M. and Wu, T.S. (2017) The Improved Pure Pursuit Algorithm for Autonomous Driving Advanced System. IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA), Hiroshima, 11-12 November 2017, 33-38.
https://doi.org/10.1109/IWCIA.2017.8203557
[3]  Eppelbaum, L.V. (2013) Non-Stochastic Long-Term Prediction Model for US Tornado Level. Natural Hazards, 69, 2269-2278.
https://doi.org/10.1007/s11069-013-0787-7
[4]  Kaplan, E.D. and Hegarty, C.J. (2006) Understanding GPS Principles and Applications. 2nd Edition, Artech House, Norwood.
[5]  Finkelstein, M., Price, C. and Eppelbaum, L. (2012) Is the Geodynamic Process in Preparation of Strong Earthquakes Reflected in the Geomagnetic Field? Journal of Geophysics and Engineering, 9, 585-594.
https://doi.org/10.1088/1742-2132/9/5/585
[6]  Eppelbaum, L.V. (2011) Study of Magnetic Anomalies over Archaeological Targets in Urban Conditions. Physics and Chemistry of the Earth, 36, 1318-1330.
https://doi.org/10.1016/j.pce.2011.02.005
[7]  Eppelbaum, L.V. and Mishne, A.R. (2011) Unmanned Airborne Magnetic and VLFinvestigations: Effective Geophysical Methodology of the Near Future. Positioning, 2, 112-133.
[8]  Eppelbaum, L.V., Katz, Y.I. and Ben-Avraham, Z. (2012) Israel—Petroleum Geology and Prospective Provinces. AAPG European Newsletter, No. 4, 4-9.
[9]  Rampinini, E., Alberti, G., Fiorenza, M., Riggio, M., Sassi, R., Borges, T.O. and Coutts, A.J. (2004) Accuracy of GPS Devices for Measuring High-Intensity Running in Field-Based Team Sports. International Journal of Sports Medicine, 36, 1-6.
[10]  Eppelbaum, L.V. and Katz, Y.I. (2015) Paleomagnetic Mapping in Various Areas of the Easternmost Mediterranean Based on an Integrated Geological-Geophysical Analysis. In: Eppelbaum, L., Ed., New Developments in Paleomagnetism Research, Ser: Earth Sciences in the 21st Century, Nova Science Publisher, New York, 15-52.
[11]  Eppelbaum, L.V. (2016) Remote Operated Vehicles Geophysical Surveys in Air, Land (Underground) and Submarine Archaeology: General Peculiarities of Processing and Interpretation. Trans. of the 12th EUG Meet., Geophysical Research Abstracts, Vol. 18, EGU2016-10055, Vienna, 17-22 April 2016, 1-7.
[12]  Berestetskii, V.B., Lifshitz, E.M. and Pitaevskii, L.P. (1982) Quantum Electrodynamics. Pergamon Press, Oxford.
[13]  Golubkov, G.V., Golubkov, M.G. and Ivanov, G.K. (2010) Rydberg States of Atoms and Molecules in a Field of Neutral Particles. In: Bychkov, V.L., Golubkov, G.V. and Nikitin, A.I., Eds., The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring, Springer, New York, 1-67.
https://doi.org/10.1007/978-90-481-3212-6_1
[14]  Golubkov, G.V., Golubkov, M.G. and Manzhelii, M.I. (2012) Microwave Radiation in the Upper Atmosphere of the Earth during Strong Geomagnetic Disturbances. Russian Journal of Physical Chemistry B, 6, 112-127.
https://doi.org/10.1134/S1990793112010186
[15]  Klobuchar, J. (1987) Ionospheric Time-Delay Algorithms for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems, 3, 325-331.
https://doi.org/10.1109/TAES.1987.310829
[16]  Golubkov, G.V., Manzhelii, M.I., Berlin, A.A., Lushnikov, A.A. and Eppelbaum, L.V. (2016) Influence of D and E Atmospheric Layers on the Propagation of Radio Waves and Satellite Signals. Journal of Lasers, Optics & Photonics, 3, 89.
[17]  Golubkov, G.V., Manzhelli, M.I., Berlin, A.A., Lushnikov, A.A. and Eppelbaum, L.V. (2016) The Problems of Passive Remote Sensing of Earth Surface. Atmosphere, Ionosphere, Safety, Kaliningrad, 35-40.
[18]  Golubkov, G.V., Golubkov, M.G. and Manzhelii, M.I. (2014) Rydberg States in the Atmosphere D Layer and GPS System Positioning Errors. Russian Journal of Physical Chemistry B, 8, 103-115.
https://doi.org/10.1134/S1990793114010126
[19]  Eppelbaum, L.V., Golubkov, G.V., Manzhelii, M.I., Berlin, A.A. and Lushnikov, A.A. (2017) Distortion of the 4.0-6.0 GHz Range Radio Signal in the E and D Atmospheric Layers. Proceedings of the World Congress on Marine Sciences, Atlanta, 16-17 November 2017, 55.
[20]  Golubkov, G.V. and Ivanov, G.K. (2001) Rydberg States of Atoms and Molecules and Elementary Processes with Their Participation. URSS, Moscow. (In Russian)
[21]  Golubkov, G.V., Devdariani, A.Z. and Golubkov, M.G. (2002) Collision of Rydberg Atom A with Atom B in the Ground Electronic State. Optical Potential. Journal of Experimental and Theoretical Physics, 95, 987-997.
[22]  Golubkov, G.V. and Golubkov, M.G. (2014) Perturbation of Highly Excited States of an Atom by the Field of a Neutral Particle. Russian Journal of Physical Chemistry B, 8, 35-44.
https://doi.org/10.1134/S1990793114010114
[23]  Afraimovich, E.L., Astafieva, E.I., Berngardt, O.I., et al. (2004) Mid-Latitude Amplitude Scintillation of GPS Signals and GPS Performance Slips at the Auroral Oval Boundary. Radiophysics and Quantum Electronics, 47, 453-468.
https://doi.org/10.1023/B:RAQE.0000047237.67771.bc
[24]  Golubkov, G.V., Golubkov, M.G., Manzhelii, M.I. and Karpov, I.V. (2014b) Optical Quantum Properties of GPS Signal Propagation Medium-D Layer. In: Bychkov, V.L., Golubkov, G.V. and Nikitin, A.I., Eds., The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lighting, Springer, New York, 1-68.
[25]  Balashov, E.M., Golubkov, G.V. and Ivanov, G.K. (1984) Radiative Transitions between the Rydberg States of Molecules. Journal of Experimental and Theoretical Physics, 59, 1188-1194.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133