全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Theoretical Investigations on the π-π Stacking Interactions in Phenol-Water Complexes

DOI: 10.4236/cc.2018.62002, PP. 15-25

Keywords: Phenol, π-π Stacking, MP2, Ab initio, etc.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Non covalent interactions are quite common in all kinds of π-systems, such as π-π interactions, long range/short range van der waal force of interactions, ion-π interactions etc. Ab initio calculations are well established and account well for the experimental long range interaction energies for small clusters of aromatic molecules and most of the calculations were carried out using the MPn methods. If a reasonably large basis set is used to calculate the stacking interaction energies for a cluster (dimer, trimer etc.) of aromatic molecules then the electron-electron correlation energy may be properly calculated. Moreover, ab initio calculations for aromatic π-systems show that the calculated stacking interaction energies highly depend on the basis set used and the electron correlation energy. In this investigation, the electron correlation of the stacked hydrated phenol systems has been accounted at MP2 level of calculations. We have calculated the π-π stacking interaction energies of the hydrated phenolic systems with different conformations.

References

[1]  McGaughey, G.B., Gagne, M. and Rappe, A.K. (1998) π-Stacking Interactions Alive and Well in Proteins. Journal of Biological Chemistry, 273, 15458.
https://doi.org/10.1074/jbc.273.25.15458
[2]  Grimme, S. (2003) Improved Second-Order Moller-Plesset Perturbation Theory by Separate Scaling of Parallel-and Antiparallel-Spin Pair Correlation Energies. Journal of Chemical Physics, 118, 9095-9102.
https://doi.org/10.1063/1.1569242
[3]  Janet, E. and Bene, D. (1988) Ab initio Molecular Orbital Study of the Structures and Energies of Neutral and Charged Bimolecular Complexes of Water with the Hydrides AHn (A = Nitrogen, Oxygen, Fluorine, Phosphorus, Sulfur, and Chlorine). Journal of Physical Chemistry A, 92, 2874-2880.
https://doi.org/10.1021/j100321a035
[4]  McDonald, D.Q. and Still, W.C. (1994) Conformational Free Energies from Simulation: Stochastic Dynamics/Monte Carlo Simulations of a Homologous Series of Gellman’s Diamides. Journal of the American Chemical Society, 116, 11550-11553.
https://doi.org/10.1021/ja00104a039
[5]  Hobza, P. and Zahradnik, R. (1988) Intermolecular Inter-Actions between Medium-Sized Systems. Nonempirical and Empirical Calculations of Interaction Energies. Successes and Failures. Chemical Review, 88, 871-897.
https://doi.org/10.1021/cr00088a004
[6]  Hobza, P., Sponer, J. and Leszczynski, J. (1997) Comment on Electron-Correlated Calculations of Electric Properties of Nucleic Acid Bases. Journal of Physical Chemistry B, 101, 8038-8039.
https://doi.org/10.1021/jp970622f
[7]  AlShamaileh, E. (2014) DFT Study of Monochlorinated Pyrene Compounds. Computational Chemistry, 2, 43-49.
https://doi.org/10.4236/cc.2014.23006
[8]  Wang, D.-F. and Wu, Y.-D. (2004) Density Functional Theory Studies of β-Substituent Effect on Conformational Preference and Anion Binding Ability of calix[4]pyrroles. Commemorative Issue in Honor of Prof. Chengye Yuan on the Occasion of His 80th Anniversary, 2004, 96-110.
[9]  Sinnokrot, M.O., Sinnokrot, E.F. and Valeev, C.D. (2002) Sherrill, Estimates of the Ab Initio Limit for π-π Interactions:? The Benzene Dimer. Journal of the American Chemical Society, 124, 10887.
https://doi.org/10.1021/ja025896h
[10]  Sinnokrot, M.O. and Sherill, C.D. (2004) Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer:? Sandwich, T-Shaped, and Parallel-Displaced Configurations. The Journal of Physical Chemistry A, 108, 10200.
https://doi.org/10.1021/jp0469517
[11]  Jurecka, P. and Hobza, P. (2003) True Stabilization Energies for the Optimal Planar Hydrogen-Bonded and Stacked Structures of Guanine…Cytosine, Adenine…Thymine, and Their 9-and 1-Methyl Derivatives:? Complete Basis Set Calculations at the MP2 and CCSD(T) Levels and Comparison with Experiment. Journal of the American Chemical Society, 125, 15608.
https://doi.org/10.1021/ja036611j
[12]  Ebata, T., Fujii, A. and Mikami, N. (1998) An Infrared Study of π-Hydrogen Bonds in Micro-Solvated Phenol:? OH Stretching Vibrations of Phenol-X (X = C6H6, C2H4, and C2H2) Clusters in the Neutral and Cationic Ground States. International Reviews in Physical Chemistry, 17, 331.
https://doi.org/10.1080/014423598230081
[13]  Feller, D. and Feyereisen, M.W. (1993) Computational Study of Hydrogen Bonding in Phenol-Acetonitrile-Water Clusters. Journal of Computational Chemistry, 14, 1027.
https://doi.org/10.1002/jcc.540140904
[14]  Watanabe, T., Ebata, T., Fujii, M. and Mikami, N. (1993) Infrared Spectroscopy of OH Stretching Vibrations of Hydrogen-Bonded tropolone-(H2O)n (n=1-3) and tropolone-(CH3OH)n (n=1 and 2) Clusters. Chemical Physics Letters, 115, 347.
[15]  Oikawa, A., Abe, H., Mikami, N. and Ito, M. (1993) Structure and Vibrations of phenol(H2O)2. The Journal of Physical Chemistry, 87, 1027.
[16]  Gerhards, M. and Kleinermanns, K. (1995) Structure and Vibrations of Phenol(H2O)2. The Journal of Chemical Physics, 103, 7392-7400.
https://doi.org/10.1063/1.470310
[17]  Fang, W. and Liu, R.-Z. (2000) Theoretical Characterization of the Structures and Properties of Phenol-(H2O)2 Complexes. Journal of Chemical Physics, 113, 5253-5258.
https://doi.org/10.1063/1.1290017
[18]  Watanabe, T., Ebata, T., Tanabe, S. and Mikami, N. (1996) Picosecond IR-UV Pump-Probe Spectroscopic Study of the Dynamics of the Vibrational Relaxation of Jet-Cooled Phenol. I. Intramolecular Vibrational Energy Redistribution of the OH and CH Stretching Vibrations of Bare Phenol. The Journal of Chemical Physics, 105, 408.
https://doi.org/10.1063/1.471917
[19]  Watanabe, H. and Iwata, I. (1997) A Study on the Structure of Water in an Aqueous Solution by the Solvent Effect on a Volume Phase Transition of N-isopropylacrylamide Gel and Low-Frequency Raman Spectroscopy. The Journal of Chemical Physics, 107, 5890.
https://doi.org/10.1063/1.474314
[20]  Ebata, T., Fujii, A. and Mikami, N. (1996) IR Mass-Resolved Spectroscopy of Complexes without Chromophore: Cyclohexanol?(H2O)n, n = 1-3 and Cyclohexanol Dimer. International Journal of Mass Spectrometry, 159, 111.
https://doi.org/10.1016/S0168-1176(96)04445-X
[21]  Janzen, Ch., Spangenberg, D., Roth, W. and Kleinermanns, K. (1999) Hydrogen Bonding in Aromatic Alcohol-Water Clusters: A Brief Review. The Journal of Chemical Physics, 110, 9898.
https://doi.org/10.1063/1.478863
[22]  Jansen, Ch. and Gerhards, M. (2001) Structures and Rearrangement Reactions of 4-aminophenol(H2O)1+ and 3-aminophenol(H2O)1+ clusters. The Journal of Chemical Physics, 115, 5445.
https://doi.org/10.1063/1.1394753
[23]  Ahn, D.-S., et al. (2003) Hydrogen Bonding in Aromatic Alcohol-Water Clusters: A Brief Review. Bulletin of the Korean Chemical Society, 24, 695-702.
https://doi.org/10.5012/bkcs.2003.24.6.695
[24]  Dimitrova, Y. (1998) Theoretical Study of Structures and Stabilities of Hydrogen-Bonded Phenol—Water Complexes. Journal of Molecular Structure (Theochem), 455, 9.
https://doi.org/10.1016/S0166-1280(98)00237-1
[25]  Gibson, Douglas, J. and van Mourik, T. (2001) Stacking with the Unnatural DNA Base 6-ethynylpyridone. Chemical Physics Letters, 668, 7-13.
https://doi.org/10.1016/j.cplett.2016.12.009
[26]  Benoit, D.M. and Clary, D.C. (2000) Quantum Simulation of Phenol—Water Clusters. The Journal of Physical Chemistry A, 104, 5590-5599.
https://doi.org/10.1021/jp994420q
[27]  Benoit, D.M. and Chavagnac, A.X. and Clary, D.C. (1998) Quaternion Formulation of Diffusion Quantum Monte Carlo for the Rotation of Rigid Molecules in Clusters. Chemical Physics Letters, 283, 269.
https://doi.org/10.1016/S0009-2614(97)01396-1
[28]  Yi, M. and Scheiner, S. (1996) Proton Transfer in the [phenol-NH3]+system: An Experimental and Ab initio Study. Chemical Physics Letters, 262, 567.
https://doi.org/10.1016/S0009-2614(96)01135-9
[29]  Brutschy, B. (1992) Application of Lanthanide Reagents in Organic Synthesis. Chemical Reviews, 92, 1567.
https://doi.org/10.1021/cr00015a005
[30]  Dopfer, O., Reiser, G., Muller-Dethlefs, K., Schlag, E.W. and Colson, S.D. (1994) Watching Proton Transfer in Real Time: Ultrafast Photoionization-Induced Proton Transfer in Phenol-Ammonia Complex Cation. The Journal of Chemical Physics, 101, 974.
https://doi.org/10.1063/1.467752
[31]  Dopfer, O. and Muller-Dethlefs, K. (1994) Noncovalent Interactions: A Challenge for Experiment and Theory. The Journal of Chemical Physics, 101, 8508.
https://doi.org/10.1063/1.468111
[32]  Suzuki, Y., et al. (1997) A Study on the Structure of Water in an Aqueous Solution by the Solvent Effect on a Volume Phase Transition of N-Isopropylacrylamide Gel and Low-Frequency Raman Spectroscopy. The Journal of Chemical Physics, 107, 5890-5897.
https://doi.org/10.1063/1.474314
[33]  Lipert, R.J. and Colson, S.D. (1988) Theoretical Characterization of the Excited-State Structures and Properties of Phenol and Its One-Water Complex. The Journal of Chemical Physics, 89, 4579.
https://doi.org/10.1063/1.454798
[34]  Solgadi, D., Jouvet, C. and Tramer, A. (1988) Picosecond Measurements of Phenol Excited-State Proton Transfer in Clusters. I. Solvent Basicity and Cluster Size Effects. The Journal of Chemical Physics, 92, 3313.
https://doi.org/10.1021/j100323a001
[35]  Jouvet, C., Lardeux-Dedonder, C., Richard-Viard, M., Solgadi, D. and Tramer, A. (1990) Excited-State Proton Transfer in Gas-Phase Clusters: 2-Naphthol-(NH3)n. The Journal of Chemical Physics, 94, 5041.
https://doi.org/10.1021/j100375a051
[36]  Steadman, J. and Syage, J.A. (1991) C2-symmetric bis(phospholanes) and Their Use in Highly Enantioselective Hydrogenation Reactions. Journal of the American Chemical Society, 113, 6786.
https://doi.org/10.1021/ja00018a011
[37]  Syage, J.A. and Steadman J. (1992) Photochemistry of phenol-(NH3)n Clusters: Solvent Effect on a Radical Cleavage of an OH Bond in an Electronically Excited State and Intracluster Reactions in the Product NH4(NH3)n-1(n-5). The Journal of Chemical Physics, 96, 9606.
https://doi.org/10.1021/j100203a009
[38]  Mikami, N., Okabe, A. and Suzuki, I. (1988) Photodissociation of the Hydrogen-Bonded [phenol-ammonia]+ heterodimer ion. The Journal of Chemical Physics, 92, 1858.
https://doi.org/10.1021/j100318a033
[39]  Mikami, N., Sato, S. and Ishigaki, M. (1993) Zero-Kinetic-Energy Photoelectron Spectroscopy of the Hydrogen-Bonded Phenol-Water Complex. Chemical Physics Letters, 202, 431.
https://doi.org/10.1016/0009-2614(93)90066-A
[40]  Sawamura, T., Fujii, A., Sato, S., Ebata, T. and Mikami, N. (1996) Size Dependence of Intracluster Proton Transfer of Phenol-(H2O)n (n = 1-4) Cations. The Journal of Chemical Physics, 100, 8131.
https://doi.org/10.1021/jp952622q
[41]  Parthasarathi, R., Subramanian, V. and Sathyamurthy, N. (2005) Hydrogen Bonding in Phenol, Water, and Phenol—Water Clusters. The Journal of Physical Chemistry A, 109, 843-850.
https://pubs.acs.org/doi/abs/10.1021/jp046499r
https://doi.org/10.1021/jp953115b
[42]  Kolar, M. and Hobza, P. (2007) High-Resolution Rotational Coherence Spectroscopy of the Phenol Dimer. The Journal of Chemical Physics A, 111, 5851-5854.
[43]  Michalska, D., Bienko, D.C., Abkowicz-Bienko, A.J. and Latajka, Z. (1996) Density Functional, Hartree-Fock, and MP2 Studies on the Vibrational Spectrum of Phenol. The Journal of Chemical Physics, 100, 17786-17790.
https://doi.org/10.1021/jp961376v
[44]  Sodupe, M., Oliva, A. and Bertran, J. (1997) Properties of Hydrogen-Bonded Complexes Obtained from the B3LYP Functional with 6-31G(d,p) and 6-31+G(d,p) Basis Sets: Comparison with MP2/6-31+G(d,p) Results and Experimental Data. The Journal of Chemical Physics A, 101, 9142-9151.
https://doi.org/10.1021/jp970571m
[45]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewaki, V.G., Ortiz, J.V., Foresmann, J.B., Ciolowski, J., Stefanov, B.B., Namayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A. (2009) Gaussian 09. Gaussian Inc., Pittsburgh.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133