全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differences in the Mechanisms by Which Yang-Invigorating and Qi-Invigorating Chinese Tonifying Herbs Stimulate Mitochondrial ATP Generation Capacity

DOI: 10.4236/cm.2018.92005, PP. 63-74

Keywords: Yang-Invigoration, Qi-Invigoration, ATP Generation Capacity, Glutathione

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to Chinese medicine theory, Yang/Qi plays a pivotal role in driving physiological functions in the body, these being highly dependent on mitochondrial ATP production. Consistent with this, Yang/Qi-invigorating Chinese tonifying herbs have been found to stimulate mitochondrial ATP generation capacity (ATP-GC) in H9c2 cardiomyocytes. In the present study, we have demonstrated that Yang-invigorating Chinese tonifying herbs (namely, Eucommiae Cortex, Cibotii Rhizoma, Dipsaci Radix, Cynomorii Herba, Cistanches Herba, Cuscutae Semen, EpimediiHerba and Morindae Radix) and Qi-invigorating Chinese tonifying herbs (namely, Ginseng Radix, Pseudostellariae Radix, Quinquefolii Radix, Codonopsis Radix, Astragali Radix, Atractylodis Rhizoma, Juiubae Fructus, Fici Simplicissimae Radix and Dioscoreae Oppositae Radix) act by different mechanisms to stimulate mitochondrial ATP-GC. While Yang-invigorating herbs fluidize mitochondrial membranes and thus stimulate ATP-GC, Qi-invigorating herbs can enhance cellular glutathione status and increase ATP-GC. The different mechanisms by which Yang-invigorating herbs and Qi-invigorating herbs stimulate mitochondrial ATP-GC may serve as the basis for establishing biomarkers for Yang/Qi-invigorating herbs and herbal health products in general.

References

[1]  Yin, H. and Shuai, X. (1992) Fundamentals of Traditional Chinese Medicine. Foreign Languages Press, Beijing.
[2]  Liu, Z. and Liu, L. (2009) Essentials of Chinese Medicine. Springer, London.
[3]  Geng, J., Huang, W., Ren, T. and Ma, X. (1991) Practical Traditional Chinese Medicine and Pharmacology. New World Press, Beijing.
[4]  Kolossov, V.L., Beaudoin, J.N., Ponnuraj, N., DiLiberto, S.J., Hanafin, W.P., Kenis P.J., et al. (2015) Thiol-Based Antioxidants Elicit Mitochondrial Oxidation via Respiratory Complex III. American Journal of Physiology-Cell Physiology, 309, C81-C91.
https://doi.org/10.1152/ajpcell.00006.2015
[5]  Drose, S., Brandt, U. and Wittig, I. (2014) Mitochondrial Respiratory Chain Complexes as Sources and Targets of Thiol-Based Redox-Regulation. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1844, 1344-1354.
https://doi.org/10.1016/j.bbapap.2014.02.006
[6]  Ko, K.M., Leon, T.Y., Mak, D.H., Chiu, P.Y., Du, Y. and Poon, M.K. (2006) A Characteristic Pharmacological Action of “Yang-Invigorating” Chinese Tonifying Herbs: Enhancement of Myocardial ATP-Generation Capacity. Phytomedicine, 13, 636-642.
https://doi.org/10.1016/j.phymed.2006.02.007
[7]  Ko, K.M. and Leung, H.Y. (2007) Enhancement of ATP Generation Capacity, Antioxidant Activity and Immunomodulatory Activities by Chinese Yang and Yin Tonifying Herbs. Chinese Medicine, 2, 3.
https://doi.org/10.1186/1749-8546-2-3
[8]  Wong, H.S., Leong, P.K., Chen, J., Leung, H.Y., Chan, W.M. and Ko, K.M. (2016) β-Sitosterol Increases Mitochondrial Electron Transport by Fluidizing Mitochondrial Membranes and Enhances Mitochondrial Responsiveness to Increasing Energy Demand by the Induction of Uncoupling in C2C12 Myotubes. Journal of Functional Foods, 23, 253-260.
https://doi.org/10.1016/j.jff.2016.02.045
[9]  Leung, H.Y. and Ko, K.M. (2008) Herba Cistanche Extract Enhances Mitochondrial ATP Generation in Rat Hearts and H9c2 Cells. Pharmaceutical Biology, 46, 418-424.
https://doi.org/10.1080/13880200802055883
[10]  De Paillerets, C., Gallay, J. and Alfsen, A. (1984) Effect of Cholesterol and Protein Content on Membrane Fluidity and 3β-Hydroxysteroid Dehydrogenase Activity in Mitochondrial Inner Membranes of Bovine Adrenal Cortex. B Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 772, 183-191.
https://doi.org/10.1016/0005-2736(84)90042-7
[11]  Griffith, O.W. (1980) Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine. Analytical Biochemistry, 106, 207-212.
https://doi.org/10.1016/0003-2697(80)90139-6
[12]  Chen, J., Wong, H.S., Leong, P.K., Leung, H.Y., Chan, W.M. and Ko, K.M. (2014) New Insights into the Chemical and Biochemical Basis of the “Yang-Invigorating” Action of Chinese Yang-Tonic Herbs. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 856273.
https://doi.org/10.1155/2014/856273
[13]  Yu, H., Liu, J., Li, J., Zang, T., Luo, G. and Shen, J. (2005) Protection of Mitochondrial Integrity from Oxidative Stress by Selenium-Containing Glutathione Transferase. Applied Biochemistry and Biotechnology, 127, 133-142.
https://doi.org/10.1385/ABAB:127:2:133
[14]  Marí, M., Morales, A., Colell, A., García-Ruiz, C. and Fernández-Checa, J.C. (2009) Mitochondrial Glutathione, a Key Survival Antioxidant. Antioxidants & Redox Signaling, 11, 2685-2700.
https://doi.org/10.1089/ars.2009.2695
[15]  Stefanson, A.L. and Bakovic, M. (2014) Dietary Regulation of Keap1/Nrf2/ARE Pathway: Focus on Plant-Derived Compounds and Trace Minerals. Nutrients, 6, 3777-3801.
https://doi.org/10.3390/nu6093777
[16]  Leong, P.K. and Ko, K.M. (2016) Induction of the Glutathione Antioxidant Response/Glutathione Redox Cycling by Nutraceuticals: Mechanism of Protection against Oxidant-Induced Cell Death. Current Trends in Nutraceuticals, 1, 1-9.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413