全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Characterization of Novel Cerium Phosphate Glass Ionomer Cements (GICs) Doped with GaCl (Phthalocyanine)

DOI: 10.4236/njgc.2018.82003, PP. 23-38

Keywords: Glass Ceramics-GIC-Crtstalline Structure, Spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cerium Pyrophosphate glass is prepared and investigated by different structural techniques. Resin modified glass ionomer cements (RGICs) of pyro cerium phosphate (40CeO2-60P2Os) composition doped with different concentrations from GaCl Phthalocyanine (C32H16ClGaN8) have been also prepared and studied for the first time. Different techniques have been applied to shed?light on the structural changes induced upon addition of GaCl-Phthalocyanine. The corresponding changes in material structure are widely approved by results of 31P magic angle spinning nuclear magnetic resonance (MAS-NMR), X-Ray diffraction and FTIR spectroscopy. The network structure of both base glass and GIC free from C32H16ClGaN8 is confirmed to be amorphous. Doping even with little concentration from GaCl-Phthalocyanine leads to changing the network structure from amorphous

References

[1]  Walawalkar, M.G., Roesky, H.W. and Murugavel, R. (1999) Discrete Silanetriols: Building Blocks for Three-Dimensional Metallasiloxanes. Accounts of Chemical Research, 32, 117-126.
[2]  Dutta, D.P. and Jain, V.K. (2000) Synthesis and Characterization of Phosphinic and Phosphate Complexes of Gallium(III) and Indium(III). Phosphorus, Sulfur, and Silicon and the Related Elements, 166, 15-26.
[3]  Brow, R.K. (2000) Review: The Structure of Simple Phosphate Glasses. Journal of Non-Crystalline Solids, 263-264, 1-28.
https://doi.org/10.1016/S0022-3093(99)00620-1
[4]  El-Damrawi, G., Hassan, A., Doweidar, H. and Shaboub, A. (2017) Structural Studies on Ag2O-P2O5 Glasses. New Journal of Glass and Ceramics, 7, 77.
https://doi.org/10.4236/njgc.2017.73007
[5]  Sidhu, S.K. and Nicholson, J.W. (2016) A Review of Glass-Ionomer Cements for Clinical Dentistry. Journal of Functional Biomaterials, 7, 16.
https://doi.org/10.3390/jfb7030016
[6]  Mount, G.J. (2002) Color Atlas of Glass Ionomer Cement. 2nd Edition, Martin Dunitz Limited, London.
[7]  Shahid, S., Hassan, U., Billington, R.W., Hill, R.G. and Anderson, P. (2014) Glass Ionomer Cements: Effect of Strontium Substitution on Esthetics, Radiopacity and Fluoride Release. Dental Materials, 30, 308-313.
https://doi.org/10.1016/j.dental.2013.12.003
[8]  Hill, R.G., Stamboulis, A. and Law, R.V. (2006) Characterisation of Fluorine Containing Glasses by 19F, 27Al, 29Si and 31P MAS-NMR Spectroscopy. Journal of Dentistry, 34, 525-532.
https://doi.org/10.1016/j.jdent.2005.08.005
[9]  El Damrawi, G., Hassan Akabdelghany, M. and Baghdady, H. (2017) Chromium Fluoride Containing Bioactive Glasses. Journal of Advances in Physics, 14, 9.
[10]  Nicholson, J.W., Czarnecka, B. and Limanowska-Shaw, H. (1999) The Long-Term Interaction of Dental Cements with Lactic Acid Solutions. Journal of Materials Science: Materials in Medicine, 10, 449-452.
https://doi.org/10.1023/A:1008991422909
[11]  El-Damrawi, G., Doweidar, H., Kamal, H. and Hassan, A. (2017) Characterization of New Categories of Bioactive Based Tellurite and Silicate Glasses. Silicon, 9, 503-509.
[12]  Wilson, A.D. (1974) Alumino-Silicate Polyacrylic Acid Cement. British Polymer Journal, 6, 165-179.
https://doi.org/10.1002/pi.4980060303
[13]  Song, J.-L. and Wang, X.-J. (2016) Crystal Structure of Mixed-Metal Phosphite, Pb2Ga(HPIIIO3)3(PVO3). Structural Chemistry and Crystallography Communication, 2.
[14]  Wu, D.-S., Cheng, W.-D., Li, X.-D., Lan, Y.-Z., Chen, D.-G., Zhang, Y., Zhang, H. and Gong, Y.-J. (2004) Syntheses, Crystal and Electronic Structures, and Linear Optics of LiMBO3 (M = Sr, Ba) Orthoboratese. The Journal of Physical Chemistry A, 108, 1837-1843.
[15]  Armand, P., Lignie, A., Beaurain, M. and Papet, P. (2014) Flux-Grown Piezoelectric Materials: Application to α-Quartz Analogues. Crystals, 4, 168-189.
https://doi.org/10.3390/cryst4020168
[16]  Sidhu, S.K. (2010) Clinical Evaluations of Resin-Modified Glass-Ionomer Restorations. Dental Materials, 26, 7-12.
https://doi.org/10.1016/j.dental.2009.08.015
[17]  Engqvist, H., Schultz-Walz, J.E., et al. (2004) Calcium-Aluminate as Biomaterial Synthesis, Design and Evaluation. Biomaterials, 25, 2781-2787.
[18]  Llusar, M., Escuder, B., de Dios López-Castro., J., Trasobares, S. and Monrós, G. (2017) Gels as Templates for Transcription. Gels, 3, 23.
[19]  Bu, W., Chen, H., Hua, Z., Liu, Z., Huang, W., Zhang, L. and Shi, J. (2004) Surfactant-Assisted Synthesis of Tb(III)-Doped Cerium Phosphate Single-Crystalline Nanorods with Enhanced Green Emission. Applied Physics Letters, 85, 4307-4309.
https://doi.org/10.1063/1.1818346
[20]  Young, A.M., Herpa, A., Searson, G.P., Chottlander, B.S. and Waters, D.N. (2000) Hydrothermal Synthesis and Luminescent Properties of Ordered Sphere CePO4. Biomaterials, 21, 1971-1979.
[21]  Yang, M., You, H., Zheng, Y., Liu, K., Jia, G., Song, Y., Huang, Y., Zhang, L. and Zhang, H. (2009) Hydrothermal Synthesis and Luminescent Properties of Novel Ordered Sphere CePO4 Hierarchical Architectures. Inorganic Chemistry, 48, 11559-11565.
https://doi.org/10.1021/ic901829v
[22]  Fujihara, S., Takano, Y. and Kitsuda, M. (2015) Microstructural Aspects of the CePO4:Tb3+ Phosphor for Luminescence Sensing. International Journal of Applied Ceramic Technology, 12, 411-417.
https://doi.org/10.1111/ijac.12173
[23]  Pusztai, P., Tóth-Szeles, E., Horváth, D., Tóth, á., Kukovecz, á. and Kónya, Z. (2015) A Simple Method to Control the Formation of Cerium Phosphate Architectures. CrystEngComm, 17, 8477-8485.
https://doi.org/10.1039/C5CE01404B
[24]  Hartgerink, J.D., Beniash, E. and Stupp, S.I. (2001) Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science, 294, 1684-1688.
https://doi.org/10.1126/science.1063187
[25]  Aoki, K., Nagano, K. and Iitaka, Y. (1971) The Crystal Structure of L-Arginine Phosphate Monohydrate. Acta Crystallographica Section B, B27, 11-23.
https://doi.org/10.1107/S056774087100164X
[26]  Heinemann, S., Heinemann, C., Joger, M., Neunzehn, J., Wiesmann, H.P. and Hanke, T. (2011) Effect of Silica and Hydroxyapatite Mineralization on the Mechanical Properties and the Biocompatibility of Nanocomposite Collagen Scaffolds. Applied Materials & Interfaces, 3, 4323-4331.
https://doi.org/10.1021/am200993q
[27]  Miravet, J.F. and Escuder, B. (2005) Reactive Organogels: Self-Assembled Support for Functional Materials. Organic Letters, 7, 4791-4794.
https://doi.org/10.1021/ol0514045
[28]  Roy, G., Miravet, J.F., Escuder, B., Sanchez, C. and Llusar, M. (2006) Morphology Templating of Nanofibrous Silicathrough pH-Sensitive Gels: “In Situ” and “Post-Diffusion” Strategies. Journal of Materials Chemistry, 16, 1817-1824.
https://doi.org/10.1039/B601561A
[29]  Suzuki, M., Nakajima, Y., Sato, T., Shirai, H. and Hanabusa, K. (2006) Fabrication of TiO2 Using L-Lysine-Based or Ganogelators as Organic Templates: Control of the Nanostructures. Chemical Communications, No. 4, 377-379.
https://doi.org/10.1039/B510302A
[30]  Delbecq, F. (2014) Supramolecular Gels from Lipopeptide Gelators: Template Improvement and Strategies for the In-Situ Preparation of Inorganic Nanomaterials and for the Dispersion of Carbon Nanomaterials. Advances in Colloid and Interface Science, 209, 96-108.
https://doi.org/10.1016/j.cis.2014.02.018

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133