全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Real Time Derivation of Atmospheric Aerosol Optical Properties by Concurrent Measurements of Optical and Sampling Instruments

DOI: 10.4236/ojap.2018.72008, PP. 140-155

Keywords: Aerosol Optical Thickness, Angstrom Exponent, Extinction Coefficient,Sampling Measurement, Optical Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

The understanding of aerosol properties in troposphere, especially their behavior near the ground level, is indispensable for precise evaluation of their impact on the Earth’s radiation studies. Although a sunphotometer or a skyradiometer can provide the aerosol optical thickness (AOT), their application is limited to daytime under near cloud free conditions. In order to attain the multi-wavelength observation for both day- and night-time including cloudy conditions, here we propose a novel monitoring technique by means of simultaneous measurement using a nephelometer (450, 550, and 700 nm), an aethalometer (370, 470, 520, 590, 660, 880, and 950 nm), and a visibility meter (550 nm). On the basis of the multi-wavelength data of scattering and absorption coefficients from the nephelometer and aethalometer, respectively, first we calculate the real-time values of aerosol extinction coefficient in addition to the Angstrom exponent (AE). Then, correction of these values is carried out by comparing the resulting extinction coefficient with the corresponding value obtained from the optical data of visibility-meter. The major reason for this correction is the loss of relatively coarse particles due to the aerodynamic effect as well as evaporation of water content from particles during the sampling procedure. Then, with the ancillary data of vertical aerosol profile obtained with a lidar (532 nm), the temporal change of AOT is estimated. In this way, information from the sampling can be converted to the ambient properties in the atmospheric boundary layer. Furthermore, daytime data from a sunphotometer (368, 500, 675, and 778 nm) and a skyradiometer (340, 380, 400, 500, 675, 870, and 1020 nm) are used to validate the resulting AOT values. From the overall procedure, we can estimate the AE and AOT values from the sampling data, with uncertainties of approximately 5% for AE and 10% for AOT. Such a capability will be useful for studying aerosol properties throughout 24 hours regardless of the solar radiation and cloud coverage.

References

[1]  Seinfeld, H. and Pandis, S. (1998) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. John Wiley & Sons, New York.
[2]  IPPC (2007) Climate Change 2007: The Physical Science Basis. Geneva.
[3]  Kuze, H. (2012) Multi-Wavelength and Multi-Direction Remote Sensing of Atmospheric Aerosols and Clouds, Remote Sensing—Applications. InTech Publication, 279-294.
https://www.intechopen.com/books/remote-sensing-applications/multi-wavelength-and-multi-direction-remote-sensing-of-atmospheric-aerosols-and-clouds
[4]  Zieger, P., Fierz-Schmidhauser, R., Weingartner, E. and Baltensperger, U. (2013) Effects of Relative Humidity on Aerosol Light Scattering: Results from Different European Sites. Atmospheric Chemistry and Physics, 13, 10609-10631.
https://doi.org/10.5194/acp-13-10609-2013
[5]  Titos, G., Lyamani, H., Cazorla, A., Sorribas, M., Foyo-Moreno, I., Wiedensohler, A. and Alados-Arboledas, L. (2014) Study of the Relative Humidity Dependence of Aerosol Light-Scattering in Southern Spain. Tellus B: Chemical and Physical Meteorology, 66, 1-15.
[6]  Chen, J., Zhao, C.S., Ma, N. and Yan, P. (2014) Aerosol Hygroscopicity Parameter Derived from the Light Scattering Enhancement Factor Measurements in the North China Plain. Atmospheric Chemistry and Physics, 14, 8105-8118. https://doi.org/10.5194/acp-14-8105-2014
[7]  Chung, C.E. (2012) Aerosol Direct Radiative Forcing: A Review. InTech Publication, 379-394.
https://www.intechopen.com/books/atmospheric-aerosols-regional-characteristics-chemistry-and-physics/aerosol-direct-radiative-forcing-a-review
[8]  Shaw, G.E. (1983) Sun Photometry. Bulletin of the American Meteorological Society, 64, 4-10.
https://doi.org/10.1175/1520-0477(1983)064<0004:SP>2.0.CO;2
[9]  Qiu, J. (1998) A Method to Determine Atmospheric Aerosol Optical Depth Using Total Direct Solar Radiation. Journal of the Atmospheric Sciences, 55, 744-757.
[10]  Cerqueira, J.G., Fernandez, J.H., Hoelzemann, J.J., Leme, N.M.P. and Sousa, C.T. (2014) Langley Method Applied in Study of Aerosol Optical Depth in the Brazilian Semiarid Region Using 500, 670 and 870 nm Bands for Sun Photometer Calibration. Advances in Space Research, 54, 1530-1543. https://doi.org/10.1016/j.asr.2014.06.006
[11]  Chen, W.N., Chen, Y.W., Chou, C.C.K., Chang, S.Y., Lin, P.H. and Chen, J.P. (2009) Columnar Optical Properties of Tropospheric Aerosol by Combined Lidar and Sunphotometer Measurements at Taipei, Taiwan. Atmospheric Environment, 43, 2700-2708.
https://doi.org/10.1016/j.atmosenv.2009.02.059
[12]  Chubarova, N.Y., Poliukhov, A.A. and Gorlova, I.D. (2016) Long-Term Variability of Aerosol Optical Thickness in Eastern Europe over 2001-2014 according to the Measurements at the Moscow MSU MO AERONET Site with Additional Cloud and NO2 Correction. Atmospheric Measurement Techniques, 9, 313-334. https://doi.org/10.5194/amt-9-313-2016
[13]  Sasano, Y. (1996) Tropospheric Aerosol Extinction Coefficient Profiles Derived from Scanning Lidar Measurements over Tsukuba, Japan, from 1990 to 1993. Applied Optics, 35, 4941-4952.https://doi.org/10.1364/AO.35.004941
[14]  Fukagawa, S., Kuze, H., Bagtasa, G., Naito, S., Yabuki, M., Takamura, T. and Takeuchi, N. (2006) Characterization of Seasonal Variation of Tropospheric Aerosols in Chiba, Japan. Atmospheric Environment, 40, 2160-2168.
https://doi.org/10.1016/j.atmosenv.2005.11.056
[15]  Manago, N., Miyazawa, S., Bannu and Kuze, H. (2011) Seasonal Variation of Tropospheric Aerosol Properties by Direct and Scattered Solar Radiation Spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 285-291.
https://doi.org/10.1016/j.jqsrt.2010.06.015
[16]  Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I. and Smirnov, A. (1998) AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66, 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
[17]  Hashimoto, M., Nakajima, T., Dubovik, O., Campanelli, M., Che, H., Khatri, P., Takamura, T. and Pandithurai, G. (2012) Development of a New Data-Processing Method for SKYNET Sky Radiometer Observations. Atmospheric Measurement Techniques, 5, 2723-2737.
https://doi.org/10.5194/amt-5-2723-2012
[18]  Müller, T., Henzing, J.S., De Leeuw, G. Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., Collaud Coen, M., Engström, J.E., Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J.Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li, S.M., Lunder, C., Marinoni, A., Martins Dos Santos, S., Moerman, M., Nowak, A., Ogren, J.A., Petzold, A., Pichon, J.M., Rodriquez, S., Sharma, S., Sheridan, P.J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R. and Wang, Y.Q. (2011) Characterization and Intercomparison of Aerosol absorption Photometers: Result of Two Intercomparison Workshops. Atmospheric Measurement Techniques, 4, 245-268.
https://doi.org/10.5194/amt-4-245-2011
[19]  Bodhaine, B.A., Wood, N.B., Dutton, E.G. and Slusser, J.R. (1999) On Rayleigh Optical Depth Calculations. Journal of Atmospheric and Oceanic Technology, 16, 1854-1861.
[20]  Soni, K., Singh, S., Bano, T., Tanwar, R.S. and Nath, S. (2011) Wavelength Dependence of the Aerosol Angstrom Exponent and Its Implications over Delhi, India. Aerosol Science and Technology, 45, 1488-1498. https://doi.org/10.1080/02786826.2011.601774
[21]  Tijjani, B.I. and Uba, S. (2012) Dependence of the Angstrom Exponents on Wavelength and Relative Humidities for Four Types of Aerosols. International Journal of Research and Revies in Applied Sciences, 2, 1085-1102.
[22]  Jung, C.H., Um, J., Lee, J.Y. and Kim, Y.P. (2013) Sensitivity Analysis of the Angstrom Exponent for Multimodal Aerosol Size Distributions. Asia-Pacific Journal of Atmospheric Sciences, 49, 625-634.
[23]  Kaufman, Y.J., Fraser, R.S. and Mahoney, R.L. (1991) Fossil Fuel and Biomass Burning Effect on Climate—Heating or Cooling? Journal of Climate, 4, 578-588.
https://doi.org/10.1175/1520-0442(1991)004<0578:FFABBE>2.0.CO;2
[24]  Eck, T.F., Holben, B.N., Reid, J.S., Dubovik, O., Smirnov, A., O’Neill, N.T., Slutsker, I. and Kinne, S. (1999) Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. Journal of Geophysical Research, 104, 31333-31349.
https://doi.org/10.1029/1999JD900923
[25]  Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D. and Slutsker, I. (2002) Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. Journal of the Atmospheric Sciences, 59, 590-608.
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
[26]  Anderson, T.L. and Ogren, J.A. (1998) Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer. Aerosol Science and Technology, 29, 57-69.
https://doi.org/10.1080/02786829808965551
[27]  Tang, I.N. (1996) Chemical and Size Effects of Hygroscopic Aerosols on Light Scattering Coefficients. Journal of Geophysical Research: Atmospheres 101, 19245-19250.
https://doi.org/10.1029/96JD03003
[28]  Penndorf, R. (1957) Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region between 0.2 and 20.0 μ and Their Application to Atmospheric Optics. Journal of the Optical Society of America, 47, 176-186.
https://doi.org/10.1364/JOSA.47.000176
[29]  Winstanley, J.V. and Adams, M.J. (1975) Point Visibility Meter: A Forward Scatter Instrument for the Measurement of Aerosol Extinction Coefficient. Applied Optics, 14, 2151-2157. https://doi.org/10.1364/AO.14.002151
[30]  Dutton, E., Reddy, P., Ryan, S. and DeLuisi, J.J. (1994) Features and Effects of Aerosol Optical Depth Observed at Mauna Loa, Hawaii: 1982-1992. Journal of Geophysical Research, 99, 8295-8306. https://doi.org/10.1029/93JD03520
[31]  Klett, J.D. (1985) Lidar Inversion with Variable Backscatter/Extinction Ratios. Applied Optics, 24, 1638-1643. https://doi.org/10.1364/AO.24.001638
[32]  Fernald, F.G., (1984) Analysis of Atmospheric Lidar Observations: Some Comments. Applied Optics, 23, 652-653. https://doi.org/10.1364/AO.23.000652
[33]  Kinjo, H., Kuze, H., Takamura, T., Yabuki, M. and Takeuchi, N. (2001) Determination of Aerosol Extinction-to-Backscattering Ratio from Multiwavelength Lidar Observation. Japanese Journal of Applied Physics, 40, 434-440. https://doi.org/10.1143/JJAP.40.434
[34]  Yabuki, M., Kuze, H., Kinjo, H. and Takeuchi, N. (2003) Determination of Vertical Distributions of Aerosol Optical Parameters by Use of Multi-Wavelength Lidar Data. Japanese Journal of Applied Physics, 42, 686-694. https://doi.org/10.1143/JJAP.42.686
[35]  Mabuchi, Y., Manago, N., Bagtasa, G., Saitoh, H. Takeuchi, N., Yabuki, M., Shiina, T. and Kuze, H. (2012) Multi-Wavelength Lidar System for the Characterization of Tropospheric Aerosols and Clouds. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, 22-27 July 2012, 2505-2508.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413