全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Review of Black Carbon in the Arctic—Origin, Measurement Methods, and Observations

DOI: 10.4236/ojap.2018.72010, PP. 181-213

Keywords: Black Carbon Emissions in the Arctic, Arctic Black Carbon Observations, Measuring Black Carbon in the Arctic, Black Carbon Deposition in the Arctic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Current knowledge about black carbon (BC) emission estimates, state-of-the-art measurement methods, near-surface BC concentrations ([BC]), and mixing ratios in snow is consolidated for the Arctic. Since no direct method exists to measure [BC], results from modern indirect methods differ among devices. Pan-Arctic wide [BC] and changes are hard to access; monitoring often ends once national ambient air quality standards are met. Few remote sites have long records. Past measurements showed distinct differences among the various Arctic climate regions. Past and own observations in communities permit qualitative discussion of the diurnal course, response to weather, season, or different emission situations like weekdays and weekends at a given site and/or among sites. Comparison of data from collocated aethalometer indicated more similar accuracy than found in mid- and low-latitudes despite of much lower ambient temperatures and [BC]. Snow samples give an incomplete glimpse at the removal and input into ecosystems.

References

[1]  Arctic-Council (2009) Arctic Marine Shipping Assessment 2009 Report. Arctic Council, Tromsa, 194.
[2]  Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., et al. (2013) Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. Journal of Geophysical Research: Atmospheres, 118, 5380-5552.
https://doi.org/10.1002/jgrd.50171
[3]  Haywood, J. and Boucher, O. (2000) Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Review of Geophysics, 38, 513-543.
https://doi.org/10.1029/1999RG000078
[4]  Dou, T.-F. and Xiao, C.-D. (2016) An Overview of Black Carbon Deposition and Its Radiative Forcing over the Arctic. Advances in Climate Change Research, 7, 115-122.
https://doi.org/10.1016/j.accre.2016.10.003
[5]  Raju, M.P., Safai, P.D., Sonbawne, S.M. and Naidu, C.V. (2015) Black Carbon Radiative Forcing over the Indian Arctic Station, Himadri during the Arctic Summer of 2012. Atmospheric Research, 157, 29-36. https://doi.org/10.1016/j.atmosres.2015.01.013
[6]  Seinfeld, J.H. and Pandis, S.N. (1997) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. John Wiley & Sons, Hoboken.
[7]  Mölders, N. (2011) Land-Use and Land-Cover Changes: Impact on Climate and Air Quality. Vol. 44, Springer Science & Business Media, Berlin, 193.
[8]  Moore, D., Copes, R., Fisk, R., Joy, R., Chan, K. and Brauer, M. (2006) Population Health Effects of Air Quality Changes Due to Forest Fires in British Columbia in 2003: Estimates from Physician-Visit Billing Data. Canadian Journal of Public Health, 97, 105-108.
[9]  Liu, J.C., Pereira, G., Uhl, S.A., Bravo, M.A. and Bell, M.L. (2015) A Systematic Review of the Physical Health Impacts from Non-Occupational Exposure to Wildfire Smoke. Environmental Research, 136, 120-132.
https://doi.org/10.1016/j.envres.2014.10.015
[10]  Asikainen, A., Pärjälä, E., Jantunen, M., Tuomisto, J.T. and Sabel, E.C. (2017) Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland. Climate, 5, 43. https://doi.org/10.3390/cli5020043
[11]  Quarato, M., De Maria, L., Franca Gatti, M., Caputi, A., Mansi, F., Lorusso, P., et al. (2017) Air Pollution and Public Health: A PRISMA-Compliant Systematic Review. Atmosphere, 8, 183. https://doi.org/10.3390/atmos8100183
[12]  Liu, H.-Y., Dunea, D., Iordache, S. and Pohoata, A. (2018) A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases. Atmosphere, 9, 150. https://doi.org/10.3390/atmos9040150
[13]  Janssen, N.A.H., Gerlofs-Nijland, M.E., Lanki, T., Salonen, R.O., Cassee, F., Hoek, G., et al. (2012) Health Effects of Black Carbon. In: Bohr, R., Ed., WHO.
http://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf
[14]  Sinkemani, R., Sinkemani, A., Li, X. and Chen, R. (2018) Risk of Cardiovascular Disease Associated with the Exposure of Particulate Matter (PM2.5): Review. Journal of Environmental Protection, 9, 607-618. https://doi.org/10.4236/jep.2018.96038
[15]  Segersson, D., Eneroth, K., Gidhagen, L., Johansson, C., Omstedt, G., Nylén, A.E., et al. (2017) Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. International Journal of Environmental Research and Public Health, 14, 742. https://doi.org/10.3390/ijerph14070742
[16]  Sharma, S., Andrews, E., Barrie, L.A., Ogren, J.A. and Lavoué, D. (2006) Variations and Sources of the Equivalent Black Carbon in the High Arctic Revealed by Long-Term Observations at Alert and Barrow: 1989-2003. Journal of Geophysical Research: Atmospheres, 111, D14208. https://doi.org/10.1029/2005JD006581
[17]  Hirdman, D., Burkhart, J.F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P.K., et al. (2010) Long-Term Trends of Black Carbon and Sulphate Aerosol in the Arctic: Changes in Atmospheric Transport and Source Region Emissions. Atmospheric Chemistry and Physics, 10, 9351-9368.
https://doi.org/10.5194/acp-10-9351-2010
[18]  Matsui, H., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L.K., Zhao, Y., et al. (2011) Seasonal Variation of the Transport of Black Carbon Aerosol from the Asian Continent to the Arctic during the Arctas Aircraft Campaign. Journal of Geophysical Research: Atmospheres, 116, D05202.
[19]  Law, K.S., Stohl, A., Quinn, P.K., Brock, C.A., Burkhart, J.F., Paris, J.-D., et al. (2014) Arctic Air Pollution: New Insights from Polarcat-Ipy. Bulletin of the American Meteorological Society, 95, 1874-1895. https://doi.org/10.1175/BAMS-D-13-00017.1
[20]  Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006) World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift, 15, 259-263.
https://doi.org/10.1127/0941-2948/2006/0130
[21]  Mölders, N. and Kramm, G. (2018) Climatology of Air Quality in Arctic Cities—Inventory and Assessment. Open Journal of Air Pollution, 7, 48-93.
https://doi.org/10.4236/ojap.2018.71004
[22]  Environment and Climate Change Canada (2016) Canada’s Black Carbon Inventory. Environment and Climate Change Canada, Gatineau, 24.
[23]  Mölders, N., Porter, S.E., Cahill, C.F. and Grell, G.A. (2010) Influence of Ship Emissions on Air Quality and Input of Contaminants in Southern Alaska National Parks and Wilderness Areas During the 2006 Tourist Season. Atmospheric Environment, 44, 1400-1413.
https://doi.org/10.1016/j.atmosenv.2010.02.003
[24]  Petzold, A., Feldpausch, P., Fritzsche, L., Minikin, A., Lauer, P., Kurok, C., et al. (2004) Particle Emissions from Ship Engines. Journal of Aerosol Science, 35, S1095-S1096.
[25]  Corbett, J.J., Lack, D.A., Winebrake, J.J., Harder, S., Silberman, A.J. and Gold, M. (2010) Arctic Shipping Emissions Inventories and Future Scenarios. Atmospheric Chemistry and Physics, 10, 10271-10311. https://www.atmos-chem-phys.net/10/9689/2010/
[26]  Zhan, J., Gao, Y., Li, W., Chen, L., Lin, H. and Lin, Q. (2014) Effects of Ship Emissions on Summertime Aerosols at Ny-Ålesund in the Arctic. Atmospheric Pollution Research, 5, 500-510. https://doi.org/10.5094/APR.2014.059
[27]  Winther, M., Christensen, J.H., Plejdrup, M.S., Ravn, E.S., Eriksson, ó.F. and Kristensen, H.O. (2014) Emission Inventories for Ships in the Arctic Based on Satellite Sampled AIS Data. Atmospheric Environment, 91, 1-14.
https://doi.org/10.1016/j.atmosenv.2014.03.006
[28]  McCarty, J.L., Krylov, A., Prishchepov, A.V., Banach, D.M., Tyukavina, A., Potapov, P., et al. (2016) Agricultural Fires in European Russia, Belarus, and Lithuania and Their Impact on Air Quality, 2002-2012. In: Garik, G. and Volker, R., Eds., Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991, Springer, Berlin, 193-221.
[29]  Snyder, J.M. (2007) The Polar Tourism Markets. In: Snyder, J.M. and Stonehouse, B., Eds., Prospects for Polar Tourism, CABI, Wallingford, 51-70.
https://doi.org/10.1079/9781845932473.0051
[30]  Berkman, P.A., Vylegzhanin, A.N. and Young, O.R. (2016) Governing the Bering Strait Region: Current Status, Emerging Issues and Future Options. Ocean Development & International Law, 47, 186-217. https://doi.org/10.1080/00908320.2016.1159091
[31]  Walsh, J.E., Fetterer, F., Scott Stewart, J. and Chapman, W.L. (2017) A Database for Depicting Arctic Sea Ice Variations Back to 1850. Geographical Review, 107, 89-107.
https://doi.org/10.1111/j.1931-0846.2016.12195.x
[32]  Tran, H.N.Q. and Mölders, N. (2012) Numerical Investigations on the Contribution of Point Source Emissions to the PM2.5 Concentrations in Fairbanks, Alaska. Air Pollution Research, 3, 199-210. https://doi.org/10.5094/APR.2012.022
[33]  Roiger, A., Thomas, J.L., Schlager, H., Law, K.S., Kim, J., Schäfler, A., et al. (2014) Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The Access Aircraft Campaign Experiment. Bulletin of the American Meteorological Society, 96, 441-460.
https://doi.org/10.1175/BAMS-D-13-00169.1
[34]  Pirjola, L., Paasonen, P., Pfeiffer, D., Hussein, T., Hämeri, K., Koskentalo, T., et al. (2006) Dispersion of Particles and Trace Gases nearby a City Highway: Mobile Laboratory Measurements in Finland. Atmospheric Environment, 40, 867-879.
https://doi.org/10.1016/j.atmosenv.2005.10.018
[35]  Robinson, M.A., Olson, M.R., Liu, Z.G. and Schauer, J.J. (2015) The Effects of Emission Control Strategies on Light Absorbing Carbon Emissions from a Modern Heavy Duty Diesel Engine. Journal of the Air & Waste Management Association, 65, 759-766.
https://doi.org/10.1080/10962247.2015.1005850
[36]  Kholod, N., Evans, M., Gusev, E., Yu, S., Malyshev, V., Tretyakova, S., et al. (2016) A Methodology for Calculating Transport Emissions in Cities with Limited Traffic Data: Case Study of Diesel Particulates and Black Carbon Emissions in Murmansk. Science of the Total Environment, 547, 305-313.
https://doi.org/10.1016/j.scitotenv.2015.12.151
[37]  Evans, M., Kholod, N., Kuklinski, T., Denysenko, A., Smith, S.J., Staniszewski, A., et al. (2017) Black Carbon Emissions in Russia: A Critical Review. Atmospheric Environment, 163, 9-21. https://doi.org/10.1016/j.atmosenv.2017.05.026
[38]  Calvello, M., Esposito, F., Lorusso, M. and Pavese, G. (2017) A Two-Year Database of BC Measurements at the Biggest European Crude Oil Pre-Treatment Plant: A Comparison with Organic Gaseous Compounds and PM10 Loading. Atmospheric Research, 164-165, 156-166.
[39]  Huang, K. and Fu, J.S. (2016) A Global Gas Flaring Black Carbon Emission Rate Dataset from 1994 to 2012. Scientific Data, 3, Article ID: 160104.
https://doi.org/10.1038/sdata.2016.104
[40]  Quincey, P., Butterfield, D., Green, D., Coyle, M. and Cape, J.N. (2009) An Evaluation of Measurement Methods for Organic, Elemental and Black Carbon in Ambient Air Monitoring Sites. Atmospheric Environment, 43, 5085-5091.
https://doi.org/10.1016/j.atmosenv.2009.06.041
[41]  Briggs, N.L. and Long, C.M. (2016) Critical Review of Black Carbon and Elemental Carbon Source Apportionment in Europe and the United States. Atmospheric Environment, 144, 409-427. https://doi.org/10.1016/j.atmosenv.2016.09.002
[42]  EDGAR (2011) Emissions Database for Global Atmospheric Research. European Commission, Joint Research Center.
[43]  Wang, R., Tao, S., Shen, H., Huang, Y., Chen, H., Balkanski, Y., et al. (2014) Trend in Global Black Carbon Emissions from 1960 to 2007. Environmental Science & Technology, 48, 6780-6787. https://doi.org/10.1021/es5021422
[44]  Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., et al. (2013) Emissions of Air Pollutants and Greenhouse Gases over Asian Regions during 2000-2008: Regional Emission Inventory in Asia (REAS) Version 2. Atmospheric Chemistry and Physics, 13, 11019-11058. https://doi.org/10.5194/acp-13-11019-2013
[45]  Van der Werf, G.R., Randerson, J.T., Giglio, L., van Leeuwen, T.T., Chen, Y., Rogers, B.M., et al. (2017) Global Fire Emissions Estimates during 1997-2016. Earth System Science Data, 9, 697-720. https://doi.org/10.5194/essd-9-697-2017
[46]  Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., et al. (2011) The Fire Inventory from NCAR (FINN): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geoscientific Model Development, 4, 625-641.
https://doi.org/10.5194/gmd-4-625-2011
[47]  Griffis, T.J., Lee, X., Baker, J.M., Russelle, M.P., Zhang, X., Venterea, R., et al. (2013) Reconciling the Differences between Top-Down and Bottom-Up Estimates of Nitrous Oxide Emissions for the U.S. Corn Belt. Global Biogeochemical Cycles, 27, 746-754.
https://doi.org/10.1002/gbc.20066
[48]  Amnuaylojaroen, T., Barth, M.C., Emmons, L.K., Carmichael, G.R., Kreasuwun, J., Prasitwattanaseree, S., et al. (2014) Effect of Different Emission Inventories on Modeled Ozone and Carbon Monoxide in Southeast Asia. Atmospheric Chemistry and Physics, 14, 12983-13012. https://doi.org/10.5194/acp-14-12983-2014
[49]  Van der Gon, H.D., Beevers, S., D’Allura, A., Finardi, S., Honoré, C., Kuenen, J., et al. (2012) Discrepancies between Top-Down and Bottom-Up Emission Inventories of Megacities: The Causes and Relevance for Modeling Concentrations and Exposure. Springer, Dordrecht, 199-204.
[50]  Timmermans, R.M.A., Denier van der Gon, H.A.C., Kuenen, J.J.P., Segers, A.J., Honoré, C., Perrussel, O., et al. (2013) Quantification of the Urban Air Pollution Increment and Its Dependency on the Use of Down-Scaled and Bottom-Up City Emission Inventories. Urban Climate, 6, 44-62. https://doi.org/10.1016/j.uclim.2013.10.004
[51]  Lack, D.A. and Corbett, J.J. (2012) Black Carbon from Ships: A Review of the Effects of Ship Speed, Fuel Quality and Exhaust Gas Scrubbing. Atmospheric Chemistry and Physics, 12, 3985-4000. https://doi.org/10.5194/acp-12-3985-2012
[52]  Mölders, N., Gende, S. and Pirhalla, M.A. (2013) Assessment of Cruise-Ship Activity Influences on Emissions, Air Quality, and Visibility in Glacier Bay National Park. Atmospheric Pollution Research, 4, 435-445. https://doi.org/10.5094/APR.2013.050
[53]  Dickson, C. (2015) National Report by Sweden Ministry of the Environment Sweden. Ministry of the Environment Sweden, Stockholm.
[54]  Environment and Climate Change Canada (2017).
https://ec.gc.ca/pollution/default.asp?lang=En&n=D521BDDF-1
[55]  Hitzenberger, R., Petzold, A., Bauer, H., Ctyroky, P., Pouresmaeil, P., Laskus, L., et al. (2006) Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location. Environmental Science & Technology, 40, 6377-6383.
https://doi.org/10.1021/es051228v
[56]  Petzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.M., Baltensperger, U., et al. (2013) Recommendations for Reporting “Black Carbon” Measurements. Atmospheric Chemistry and Physics, 13, 8365-8379.
https://doi.org/10.5194/acp-13-8365-2013
[57]  Backman, J., Schmeisser, L., Virkkula, A., Ogren, J.A., Asmi, E., Starkweather, S., et al. (2017) On Aethalometer Measurement Uncertainties and an Instrument Correction Factor for the Arctic. Atmospheric Measurements and Technology, 10, 5039-5062. https://doi.org/10.5194/amt-10-5039-2017
[58]  Winiger, P., Andersson, A., Eckhardt, S., Stohl, A. and Gustafsson, Ö. (2016) The Sources of Atmospheric Black Carbon at a European Gateway to the Arctic. Nature Communications, 7, Article No. 12776. https://doi.org/10.1038/ncomms12776
[59]  Petzold, A. and Schönlinner, M. (2004) Multi-Angle Absorption Photometry—A New Method for the Measurement of Aerosol Light Absorption and Atmospheric Black Carbon. Journal of Aerosol Science, 35, 421-441.
https://doi.org/10.1016/j.jaerosci.2003.09.005
[60]  Liousse, C., Cachier, H. and Jennings, S.G. (1993) Optical and Thermal Measurements of Black Carbon Aerosol Content in Different Environments: Variation of the Specific Attenuation Cross-Section, Sigma (Σ). Atmospheric Environment. Part A. General Topics, 27, 1203-1211.
https://doi.org/10.1016/0960-1686(93)90246-U
[61]  Dutkiewicz, V.A., de Julio, A.M., Ahmed, T., Liang, J., Hopke, P.K, Skeire, et al. (2014) Forty-Seven Years of Weekly Atmospheric Black Carbon Measurements in the Finnish Arctic: Decrease in Black Carbon with Declining Emissions. Journal of Geophysical Research: Atmospheres, 119, 7667-7683. https://doi.org/10.1002/2014JD021790
[62]  Horvath, H. (1993) Atmospheric Light Absorption—A Review. Atmospheric Environment. Part A. General Topics, 27, 293-317.
https://doi.org/10.1016/0960-1686(93)90104-7
[63]  Moosmüller, H., Chakrabarty, R.K. and Arnott, W.P. (2009) Aerosol Light Absorption and Its Measurement: A Review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 844-878. https://doi.org/10.1016/j.jqsrt.2009.02.035
[64]  Drinovec, L., Gregorič, A., Zotter, P., Wolf, R., Bruns, E.A., Prévôt, A.S.H., et al. (2017) The Filter-Loading Effect by Ambient Aerosols in Filter Absorption Photometers Depends on the Coating of the Sampled Particles. Atmospheric Measurement Techniques, 10, 1043-1059.
https://doi.org/10.5194/amt-10-1043-2017
[65]  Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hämeri, K., et al. (2007) A Simple Procedure for Correcting Loading Effects of Aethalometer Data. Journal of the Air & Waste Management Association, 57, 1214-1222.
https://doi.org/10.3155/1047-3289.57.10.1214
[66]  Holcomb, D.F. and Norberg, R.E. (1955) Nuclear Spin Relaxation in Alkali Metals. Physical Review, 98, 1074-1091. https://doi.org/10.1103/PhysRev.98.1074
[67]  Hagler, G.S.W., Yelverton, T.L.B., Vedantham, R., Hansen, A.D.A. and Turner, J.R. (2011) Post-Processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-Time Black Carbon Data. Aerosol and Air Quality Research, 11, 539-546.
https://doi.org/10.4209/aaqr.2011.05.0055
[68]  Ogren, J.A., Wendell, J., Andrews, E. and Sheridan, P.J. (2017) Continuous Light Absorption Photometer for Long-Term Studies. Atmospheric Measurement Techniques, 10, 4805-4818. https://doi.org/10.5194/amt-10-4805-2017
[69]  Bond, T.C., Anderson, T.L. and Campbell, D. (1999) Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols. Aerosol Science and Technology, 30, 582-600. https://doi.org/10.1080/027868299304435
[70]  Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., et al. (2011) Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques. Aerosol Science and Technology, 45, 295-312.
https://doi.org/10.1080/02786826.2010.533215
[71]  Müller, T., Henzing, J.S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., et al. (2011) Characterization and Intercomparison of Aerosol Absorption Photometers: Result of Two Intercomparison Workshops. Atmospheric Measurement Techniques, 4, 245-268.
https://doi.org/10.5194/amt-4-245-2011
[72]  Cavalli, F., Viana, M., Yttri, K.E., Genberg, J. and Putaud, J.P. (2010) Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EuSAAR Protocol. Atmospheric Measurement Techniques, 3, 79-89. https://doi.org/10.5194/amt-3-79-2010
[73]  Chow, J.C., Watson, J.G., Chen, L.W.A., Arnott, W.P., Moosmüller, H. and Fung, K. (2004) Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environmental Science & Technology, 38, 4414-4422. https://doi.org/10.1021/es034936u
[74]  Hitzenberger, R., Dusek, U. and Berner, A. (1996) Black Carbon Measurements Using an Integrating Sphere. Journal of Geophysical Research: Atmospheres, 101, 19601-19606. https://doi.org/10.1029/95JD02412
[75]  Lack, D.A., Lovejoy, E.R., Baynard, T., Pettersson, A. and Ravishankara, A.R. (2006) Aerosol Absorption Measurement Using Photoacoustic Spectroscopy: Sensitivity, Calibration, and Uncertainty Developments. Aerosol Science and Technology, 40, 697-708.
https://doi.org/10.1080/02786820600803917
[76]  Reisinger, P., Wonaschütz, A., Hitzenberger, R., Petzold, A., Bauer, H., Jankowski, N., et al. (2008) Intercomparison of Measurement Techniques for Black or Elemental Carbon under Urban Background Conditions in Wintertime: Influence of Biomass Combustion. Environmental Science & Technology, 42, 884-889.
https://doi.org/10.1021/es0715041
[77]  Mölders, N., Tran, H.N.Q., Quinn, P., Sassen, K., Shaw, G.E. and Kramm, G. (2011) Assessment of WRF/Chem to Capture Sub-Arctic Boundary Layer Characteristics During Low Solar Irradiation Using Radiosonde, Sodar, and Station Data. Atmospheric Pollution Research, 2, 283-299.
https://doi.org/10.5094/APR.2011.035
[78]  Husain, L., Dutkiewicz, V.A. and Maenhaut, W. (2011) Variation in Aerosol Black Carbon in Ny-Ålesund, Spitsbergen, Norway, from 1991 to 2004. The Arctic as a Messenger for Global Processes—Climate Change and Pollution, Copenhagen.
[79]  Kramm, G. and Meixner, F.X. (2000) On the Dispersion of Trace Species in the Atmospheric Boundary Layer: A Re-Formulation of the Governing Equations for the Turbulent Flow of the Compressible Atmosphere. Tellus, 52A, 500-522.
https://doi.org/10.3402/tellusa.v52i5.12279
[80]  Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., et al. (2010) Minimizing Light Absorption Measurement Artifacts of the Aethalometer: Evaluation of Five Correction Algorithms. Atmospheric Measurement Techniques, 3, 457-474. https://doi.org/10.5194/amt-3-457-2010
[81]  Sinha, P.R., Kondo, Y., Koike, M., Ogren, J.A., Jefferson, A., Barrett, T.E., et al. (2017) Evaluation of Ground-Based Black Carbon Measurements by Filter-Based Photometers at Two Arctic Sites. Journal of Geophysical Research: Atmospheres, 122, 3544-3572.
https://doi.org/10.1002/2016JD025843
[82]  Ferrero, L., Cappelletti, D., Busetto, M., Mazzola, M., Lupi, A., Lanconelli, C., et al. (2016) Vertical Profiles of Aerosol and Black Carbon in the Arctic: A Seasonal Phenomenology along 2 Years (2011-2012) of Field Campaigns. Atmospheric Chemistry and Physics, 16, 12601-12629.
https://doi.org/10.5194/acp-16-12601-2016
[83]  Schwarz, J.P., Weinzierl, B., Samset, B.H., Dollner, M., Heimerl, K., Markovic, M.Z., et al. (2017) Aircraft Measurements of Black Carbon Vertical Profiles Show Upper Tropospheric Variability and Stability. Geophysical Research Letters, 44, 1132-1140.
https://doi.org/10.1002/2016GL071241
[84]  Hyvärinen, A.P., Kolmonen, P., Kerminen, V.M., Virkkula, A., Leskinen, A., Komppula, M., et al. (2011) Aerosol Black Carbon at Five Background Measurement Sites over Finland, a Gateway to the Arctic. Atmospheric Environment, 45, 4042-4050.
https://doi.org/10.1016/j.atmosenv.2011.04.026
[85]  Baldasano, J.M., Valera, E. and Jiménez, P. (2003) Air Quality Data from Large Cities. The Science of the Total Environment, 307, 141-165.
https://doi.org/10.1016/S0048-9697(02)00537-5
[86]  Sisler, J.F. and Cahill, T.A. (1993) Spatial and Temporal Patterns and the Chemical Composition of the Haze and Its Impact on Visibility in Alaska. CIRA 31.
[87]  Viidanoja, J., Sillanpää, M., Laakia, J., Kerminen, V.-M., Hillamo, R., Aarnio, P., et al. (2002) Organic and Black Carbon in PM2.5 and PM10: 1 Year of Data from an Urban Site in Helsinki, Finland. Atmospheric Environment, 36, 3183-3193.
https://doi.org/10.1016/S1352-2310(02)00205-4
[88]  Pakkanen, T.A., Mäkelä, T., Hillamo, R.E., Virtanen, A., Rönkkö, T. and Hämerti, K. (2006) Monitoring of Black Carbon and Size-Seggregated Particle Number Concentrations at 9-m and 65-m Distances from a Major Road in Helsinki. Boreal Environment Research, 11, 295-309.
[89]  Enroth, J., Saarikoski, S., Niemi, J., Kousa, A., Ježek, I., Močnik, G., et al. (2016) Chemical and Physical Characterization of Traffic Particles in Four Different Highway Environments in the Helsinki Metropolitan Area. Atmospheric Chemistry Physics, 16, 5497-5512.
https://doi.org/10.5194/acp-16-5497-2016
[90]  Shevchenko, V., Starodymova, D., Vinogradova, A., Lisitzin, A., Makarov, V., Popova, S., et al. (2015) Elemental and Organic Carbon in Atmospheric Aerosols over the Northwestern Coast of Kandalaksha Bay of the White Sea. Doklady Earth Sciences, 461, 242-246.
https://doi.org/10.1134/S1028334X1503006X
[91]  Quinn, P.K., Shaw, G., Andrews, E., Dutton, E.G., Ruoho-Airola, T. and Gong, S.L. (2007) Arctic Haze: Current Trends and Knowledge Gaps. Tellus, 59B, 99-114.
https://doi.org/10.1111/j.1600-0889.2006.00236.x
[92]  Gong, S.L., Zhao, T.L., Sharma, S., Toom-Sauntry, D., Lavoué, D., Zhang, X.B., et al. (2010) Identification of Trends and Interannual Variability of Sulfate and Black Carbon in the Canadian High Arctic: 1981-2007. Journal of Geophysical Research: Atmospheres, 115, D07305. https://doi.org/10.1029/2009JD012943
[93]  Ching, J., West, M. and Riemer, N. (2018) Quantifying Impacts of Aerosol Mixing State on Nucleation-Scavenging of Black Carbon Aerosol Particles. Atmosphere, 9, 17. https://doi.org/10.3390/atmos9010017
[94]  Doherty, S.J., Dang, C., Hegg, D.A., Zhang, R. and Warren, S.G. (2014) Black Carbon and Other Light-Absorbing Particles in Snow of Central North America. Journal of Geophysical Research: Atmospheres, 119, 12,807-12,831.
https://doi.org/10.1002/2014JD022350
[95]  Qi, L., Li, Q., Lui, Y. and He, C. (2017) Factors Controlling Black Carbon Distribution in the Arctic. Atmospheric Chemistry and Physics, 17, 1037-1059.
https://doi.org/10.5194/acp-17-1037-2017
[96]  Dou, T., Xiao, C., Shindell, D.T., Liu, J., Eleftheriadis, K., Ming, J., et al. (2012) The Distribution of Snow Black Carbon Observed in the Arctic and Compared to the GISS-PUCCINI Model. Atmospheric Chemistry and Physics, 12, 7995-8007.
https://doi.org/10.5194/acp-12-7995-2012
[97]  Forsström, S., Isaksson, E., Skeie, R.B., Ström, J., Pedersen, C.A., Hudson, S.R., et al. (2013) Elemental Carbon Measurements in European Arctic Snow Packs. Journal of Geophysical Research: Atmospheres, 118, 13,614-13,627.
https://doi.org/10.1002/2013JD019886
[98]  Hegg, D.A., Clarke, A.D., Doherty, S.J. and Ström, J. (2011) Measurements of Black Carbon Aerosol Washout Ratio on Svalbard. Tellus B, 63, 891-900.
https://doi.org/10.1111/j.1600-0889.2011.00577.x
[99]  Tørseth, K., Aas, W., Breivik, K., Fjæraa, A.M., Fiebig, M., Hjellbrekke, A.G., et al. (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and Observed Atmospheric Composition Change during 1972-2009. Atmospheric Chemistry and Physics, 12, 5447-5481. https://doi.org/10.5194/acp-12-5447-2012
[100]  ARM (2018) ARM Data Archive. US Department of Energy.
https://www.arm.gov/data
[101]  Commission, E. (2010) Emission Database for Global Atmospheric Research (EDGAR). Release Version 4.1. http://edgar.jrc.ec.europa.eu
[102]  Randerson, J.T., van der Werf, G.R., Giglio, L., Collatz, G.J. and Kasibhatla, P.S. (2018) Global Fire Emissions Database, Version 4.1 (GFEDv4). ORNL DAAC, Oak Ridge.
https://doi.org/10.3334/ORNLDAAC/1293
[103]  Doherty, S.J., Warren, S.G., Grenfell, T.C., Clarke, A.D. and Brandt, R.E. (2010) Light-Absorbing Impurities in Arctic Snow. Atmospheric Chemistry and Physics, 10, 11647-11680.
https://doi.org/10.5194/acp-10-11647-2010

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133