全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Structure, Electronic Structure, Properties and Analyses of Five Azopyridine Ruthenium Complexes α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl of RuCl2(4,6-Dimethyl-Phenylazopyridine)2 as Potential Cancer Drugs: DFT and TD-DFT Investigations

DOI: 10.4236/cc.2018.63003, PP. 27-46

Keywords: Azopyridine, DFT, NBO, Pseudo-Potential, Ru(II) Complexes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ground state geometries, natural bond orbital (NBO), analysis of frontier molecular orbitals (FMOs), analysis and spectral (RMN and UV-Visible) properties of five azopyridine ruthenium (II) complexes α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl of RuCl2(Dazpy)2 have been theoretically studied by the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods using two basis sets: Lanl2DZ and a generic basis set in gas or in chloroform solvent. Dazpy stands for 4,6-dimethyl-phenylazopyridine. Optimized geometry shows that, except β-Cl, all the other four isomers α-Cl, γ-Cl, δ-Cl and ε-Cl are C2 symmetrical. Otherwise, a good agreement was found between experimental and the calculated geometry and NMR data. Moreover, Lanl2DZ effective core potential basis set provides good chemical shifts and geometric properties. Furthermore, the prediction of the frontier orbitals (Highest Occupied Molecular Orbital or HOMO and Lowest Unoc-cupied Molecular Orbital or LUMO) shows that the most active isomer suita-ble for electronic reactions is admitted to be δ-Cl. Besides, the NBO analysis indicates that the Ru-N is formed by the electron delocalization of lone pair atomic orbital of N2 and Npy to Ru. Also, the strongest interactions between LP(N) with LP*(Ru) and LP(Cl) with LP*(Ru) stabilize the molecular struc-ture. In addition, NBO shows that the five d orbitals of Ru in the complex are organized so that there is no order of priority from one complex to another. Therefore, the transition LP(Ru) → π*(N1 = N2) corresponding to Metal to Li-gand Charge Transfer (MLCT) is in reality no more than dπ*. Besides, TDDFT prediction in chloroform solvent reveals that all the five isomerics complexes absorb in the visible region as well as efficient photosensitizers. What’s more, δ-RuCl2(dazpy)2 can potentially act as the excellent sensitizer with a large band of absorption in visible region and a small excited energy. This study can help design and find out the ability or properties of the com-plex to behave as sensitizer or potential cancer drugs.

References

[1]  Heeres, A., van Doren, H., Gotlieb, K. and Bleeker, I. (1997) Synthesis of α-and β-d-Glucopyranuronate 1-Phosphate and α-d-Glucopyranuronate 1-Fluoride: Intermediates in the Synthesis of d-Glucuronic Acid from Starch. Carbohydrate Research, 299, 221-227.
https://doi.org/10.1016/S0008-6215(97)00030-X
[2]  Ziegler, M. and Zelewsky, A.V. (1998) Charge-Transfer Excited State Properties of Chiral Transition Metal Coordination Compounds Studied by Chiroptical Spectroscopy. Coordination Chemistry Reviews, 177, 257-300.
https://doi.org/10.1016/S0010-8545(98)00186-6
[3]  Dougan, S.J., Melchart, M., Habtemariam, A., Parsons, S. and Sadler, P.J. (2006) Phenylazo-Pyridine and Phenylazo-Pyrazole Chlorido Ruthenium (II) Arene Complexes: Arene Loss, Aquation and Cancer Cell Cytotoxicity. Inorganic Chemistry, 45, 10882-10894.
https://doi.org/10.1021/ic061460h
[4]  Basuli, F., Das, A., Mostafa, G., Peng, S.M. and Bhattacharya, S. (2000) Chemistry of Ruthenium with Some Phenolic. Polyhedron, 19, 1663-1672.
https://doi.org/10.1016/S0277-5387(00)00404-6
[5]  Boelrijk, A.E.M., Anja, M., Jorna, J. and Reedijk, J. (1995) Containing a 2-(Phenyl) Azopyridine or a 2-(Nitrophenyl)Azopyridine Ligand. Journal of Molecular Catalysis A: Chemical, 103, 73-85.
https://doi.org/10.1016/1381-1169(95)00112-3
[6]  Barf, G.A. and Sheldon, R.A. (1995) Ruthenium (II) 2-(Phenylazo) Pyridine Complexes as Epoxidation Catalysts. Journal of Molecular Catalyst A: Chemiccoll, 98, 143-146.
https://doi.org/10.1016/1381-1169(95)00026-7
[7]  Bamba, K. (2004) Oxydation électrocatalytique de monosaccharides sur des complexes de ruthénium et sur le platine modifié par des adatomes métalliques. PhD Thesis, University of Poitiers, Poitiers, 70.
[8]  Bamba, K., Leger, J.M., Garnier, E., Bachmann, C., Servat, K. and Kokoh, K.B. (2005) Selective Electro-Oxidation of D-Glucose by RuCl2(azpy)2 Complexes as Electrochemical Mediators. Electrochimica Acta, 50, 3341-3346.
https://doi.org/10.1016/j.electacta.2004.12.007
[9]  Velders, A.H., Kooijman, H., Spek, A.L., Haasnoot, J.G., De Vos, D. and Reedijk, J. (2000) Strong Differences in the in Vitro Cytotoxicity of Three Isomeric Dichlorobis(2-Phenylazopyridine)Ruthenium(II) Complexes. Inorganic Chemistry, 39, 2966-2967.
https://doi.org/10.1021/ic000167t
[10]  Hotze, A.C.G., Caspers, S.E., de Vos, D., Kooijman, H.S.A.L., Flamigni, A., Marina, B., Sava, G., Haasnoot, J.G. and Reedijk, J. (2004) Structure-Dependent in Vitro Cytotoxicity of the Isomeric Complexes [RuL2Cl2] (L = o-Tolylazopyridine and 4-Methyl-2-Phenylazopyridine) in Comparaison to [Ru(azpy)2Cl2]. Journal of Biological Inorganic Chemistry, 9, 354-364.
https://doi.org/10.1007/s00775-004-0531-6
[11]  Changsaluk, U. and Hansongnern, K. (2005) Dichlorobi(5methyl-2-(phenylazo) pyridine) Ruthénium (II) Complex: Charaterisation and NMR Sepectroscopy. Songklanakarin Journal of Science and Technology, 27, 739-749.
[12]  N’Guessan, K.N., Kafoumba, B., Ouattara, W.P. and Nahossé, Z. (2017) Theoretical Investigation of the Structure Activity Relationships (SARs) of a Series of Five Isomeric α, β, γ, δ, ε Ruthenium Complexes RuCl2L2 with Azopyridine Ligands [L = azpy, tazpy, 4mazpy, 5mazpy]. International Journal of Engineering Research and Application, 7, 58-70.
https://doi.org/10.9790/9622-0706015870
[13]  Kouakou, N.N., Mamadou, R.K., Kafoumba, B., Ouattara, W.P. and Nahossé, Z. (2017) Quantitative Structure Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method. Computational Molecular Bioscience, 7, 19-31.
https://doi.org/10.4236/cmb.2017.72002
[14]  Ackermann, M.N., Moore, K.B., Colligan, A.S., Thomas-Wohlever, J.A. and Warren, K.J. (2003) Inorganic Chemistry in Nuclear Imaging and Radiotherapy: Current and Future Directions. Journal of Organometallic Chemistry, 667, 81-89.
https://doi.org/10.1016/S0022-328X(02)02140-X
[15]  Ackermann, M.N., Fairbrother, W.G., Amin, N.S., Deodene, C.J., Lamborg, C.M. and Martin, P.T. (1996) Tetracarbonylmolybdenum Complexes of 2-(phenylazo)pyridine Ligands. Correlations of Molybdenum-95 Chemical Shifts with Electronic, Infrared, and Electrochemical Properties. Journal of Organometallic Chemistry, 523, 145-151.
[16]  Kooijman, H., Hotze, C.G., Capers, S.E., Haasnoot, J.G., Reedijk, J. and Spek, A.L. (2004) α-Dichlorobis(2-phenylazo-4,6-dimathylpyridine)ruthénium (II) Chloroform. Acta Crystallographica E, 60, m247-m249.
https://doi.org/10.1107/S1600536804001618
[17]  Affi, S.T., Bamba, K. and Ziao, N. (2015) Computational Characterization of Organometallic Ligands Coordinating Metal: Case of Azopyridine Ligands. Journal of Theoretical and Computational Chemistry, 14, Article ID: 1550006.
https://doi.org/10.1142/S0219633615500066
[18]  Goswami, S., Chakravarty, A.R. and Chakravorty, A. (1981) Chemistry of Ruthenium. 2. Synthesis, Structure, and Redox Properties of 2-(arylazo)pyridine Complexes. Inorganic Chemistry, 20, 2246-2250.
https://doi.org/10.1021/ic50221a061
[19]  Bao, T., Krause, K. and Krause, R.A. (1988) Hydroxide-Assisted Stereospecific Isomerization of a Trans-Dichlorobischelate of Ruthenium (II). Inorganic Chemistry, 27, 759-761.
https://doi.org/10.1021/ic00277a037
[20]  Velders, A.H., van der Schilden, K., Hotze, A.A., Reedijk, J., Kooijman, H. and Spek, A.L. (2004) Dichlorobis(2-phenylazopyri dine)ruthenium(II) Complexes: Characterisation, Spectroscopic and Structural Properties of Four Isomers. Dalton Transactions, 448-455.
https://doi.org/10.1039/B313182C
[21]  Jager, M., Freitag, L. and González, L. (2015) Using Computational Chemistry to Design Ru Photosensitizers with Directional Charge Transfer. Coordination Chemistry Reviews, 304-305, 146-165.
https://doi.org/10.1016/j.ccr.2015.03.019
[22]  Petersson, G.A., Malick, D.K., Wilson, W.G., Ochterski, J.W., Montgomery, J.A. and Frisch, J.M.J. (1998) Calibration and Comparison of the Gaussian-2, Complete Basis Set, and Density Functional Methods for Computational Thermochemistry. The Journal of Chemical Physics, 109, Article ID: 10570.
https://doi.org/10.1063/1.477794
[23]  Zheng, K.C., Kuang, D.B., Wang, J.P. and Shen, Y. (2000) Electronic Structure and Related Chemical Properties of Complexes M(bpy)2+3(M=Fe,Ru,Os). Acta Physico-Chimica Sinica, 16, 608.
https://doi.org/10.3866/PKU.WHXB20000707
[24]  Becke, A.D. (1993) A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics, 98, 1372-1377.
https://doi.org/10.1063/1.464304
[25]  Foresman, J.B. and Frisch, E. (1996) Exploring Chemistry with Electronic Structure Methods. Second Edition, Gaussian Inc., Pittsburgh.
[26]  Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montgomery, J.J., Vreven, T., Kudin, K., Burant, J., Millam, J., Iyengar, S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, H., Nakatsuji, M., Hada, M., Ehara, K., Hasegawa, J., Fukuda, R., Toyota, K., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, J.A., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, K., Rabuck, D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, Y.C., Nanayakkara, A., Challacombe, M., Gill, P.W., Johnson, B., Chen, W., Wong, M.W., Gonzaler, C. and Pople, J.A. (2004) Gaussian 03, Revision E.01. Gaussian, Wallingford.
[27]  Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Review, 88, 899-926.
[28]  Glendening, E.D., Reed, A.E., Carpenter, J.E. and Weinhold, F. (1996-2001) The NBO3.0 Program. University of Wisconsin, Madison.
[29]  Barone, V. and Cossi, M. (1998) Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A, 102, 1995-2001.
https://doi.org/10.1021/jp9716997
[30]  Cossi, M., Rega, N., Scalmani, G. and Barone, V. (2003) Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. Journal of Computational Chemistry, 24, 669-681.
https://doi.org/10.1002/jcc.10189
[31]  Shriver, D.F. and Atkins, P. (1999) Inorganic Chemistry. 3rd Edition, Oxford University Press, New York, 235-236.
[32]  Chen, J.C.L.J., Qian, L. and Zheng, K.C. (2005) Electronic Structures and SARs of the Isomeric Complexes α-, β-, γ-[Ru(mazpy)2Cl2] with Different Antitumor Activities. Journal of Molecular Structure: THEOCHEM, 728, 93-101.
https://doi.org/10.1016/j.theochem.2005.05.005
[33]  Bamba, K., Patrice, O., Nobel, N. and Ziao, N. (2016) SARs Investigation of α-, β-, γ-, δ-, ε-RuCl2(Azpy)2 Complexes as Antitumor Drugs. Computational Chemistry, 4, 1-10.
https://doi.org/10.4236/cc.2016.41001
[34]  Oziminski, W., Narbutt, J., Michalik, J. and Smulek, W. (2010) Theoretical Investigations on the Structure Bonding in Neutral Trinitrate Complexes of Americium (III) and Europium (III) with. Centre of Radiochemistry and Nuclear Chemistry.
[35]  Singh, R.K., Verma, S.K. and Sharma, P.D. (2011) DFT Based Study of Interaction between Frontier Orbitals of Transition Metal Halides and Thioamides. International Journal of Chemtech Research, 3, 1571-1579.
[36]  Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. and von Zelewsky, A. (1988) Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Eletrochemistry, and Chemiluminescence. Coordination Chemistry Reviews, 84, 85-277.
https://doi.org/10.1016/0010-8545(88)80032-8
[37]  Vitnik, V.D., Vitnik, Z.J., Banjac, N.R., Valentic, N.V., Uscumlic, G.S. and Juranic, I.O. (2014) Quantum Mechanical and Spectroscopic (FT-IR, 13C, 1H NMR and UV) Investigations of Potent AntiepilepticDrug 1-(4-Chloro-Phenyl)-3-Phenyl Succinimide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 42-53.
https://doi.org/10.1016/j.saa.2013.07.099
[38]  Prasad, M., Sri, N., Veeraiah, A., Veeraiah, V. and Chaitanya, K. (2013) Molecular Structure, Vibrational Spectroscopic (FT-IR, FT-Raman), UV-Vis Spectra, First Order Hyperpolarizability NBO Analysis, HOMO and LUMO Analysis, Thermodynamic Properties of 2,6-Dichloropyrazine by Ab Inito HF and Density Functional Method. Journal of Atomic and Molecular Sciences, 4, 1-17.
[39]  Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons, New York.
[40]  Chen, L., Liu, L., Chen, J.C., Shi, S., Tan, C.T., Zheng, K.C. and Ji, L.N. (2008) Experimental and Theoretical Studies on the DNA-Binding and Spectral Properties of Water-Soluble Complex [Ru(MeIm)4(dpq)]2+. Journal of Molecular Structure, 881, 156-166.
https://doi.org/10.1016/j.molstruc.2007.09.010
[41]  Chen, J.C., Li, J., Wu, W. and Zheng, K.C. (2006) Structures and Activities of a Series of the Isomeric Complexes RuCl2(azpy)2. Acta Physico-Chimica Sinica, 22, 391-396.
[42]  Fan, W.J., Cai, J.W., Yang, G.J., Chi, J.W., Zhou, D., Tan, D.Z. and Zhang, R.Q. (2016) Aggregation of Metal-Free Organic Sensitizers on TiO2(101) Surface for Use in Dye-Sensitized Solar Cells: A Computational Investment. Computational and Theoretical Chemistry, 1093, 1-8.
https://doi.org/10.1016/j.comptc.2016.08.006
[43]  Umer, M., Ibnelwaleed, A.H., Muhammad, D., Shakeel, A. and Khalil, H. (2015) Theoretical Study of Benzene/Thiophene Based Photosensitizers for Dye Sensitized Solar Cells (DSSCs). Dyes and Pigments, 118, 152-158.
https://doi.org/10.1016/j.dyepig.2015.03.003
[44]  Shalabi, A., El Mahdy, A., Taha, H. and Soliman, K. (2005) The Effects of Macrocycle and Anchoring Group Replacements on the Performance of Porphyrin Based Sensitizer: DFT and TD-DFT Study. Journal of Physics and Chemistry of Solids, 76, 22-33.
https://doi.org/10.1016/j.jpcs.2014.08.002
[45]  Li, M., Kou, L., Diao, L., Zhang, Q., Li, Z., Wu, Q., Lu, W., Pan, D. and Wei, Z. (2015) Theoretical Study of WS-9-Based Organic Sensitizers for Unusual vis/NIR Absorption and Highly Efficient Dye-Sensitized Solar Cells. Journal of Physics and Chemistry of Solids, 119, 9782-9790.
[46]  Sun, C., Li, Y., Song, P. and Ma, F. (2016) An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application. Materials, 9, E813.
https://doi.org/10.3390/ma9100813

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133