全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generalized Irreducible α-Matrices and Its Applications

DOI: 10.4236/alamt.2018.83010, PP. 111-121

Keywords: Generalized Irreducible α-Matrices, H-Matrices, Irreducible, Nonsingular, Eigenvalues

Full-Text   Cite this paper   Add to My Lib

Abstract:

The class of generalized α-matrices is presented by Cvetkovi?, L. (2006), and proved to be a subclass of H-matrices. In this paper, we present a new class of matrices-generalized irreducible α-matrices, and prove that a generalized irreducible α-matrix is an H-matrix. Furthermore, using the generalized arithmetic-geometric mean inequality, we obtain two new classes of H-matrices. As applications of the obtained results, three regions including all the eigenvalues of a matrix are given.

References

[1]  Bru, R., Cvetković, L., Kostić, V. and Pedroche, F. (2010) Characterization of α1-and α2-Matrices. Central European Journal of Mathematics, 8, 32-40.
[2]  Bru, R., Giménez, I. and Hadjidimos, A. (2012) Is a General H-Matrix? Linear Algebra and its Applications, 436, 364-380. https://doi.org/10.1016/j.laa.2011.03.009
[3]  Cvetković, L., Kostić, V. and Varga, R.S. (2004) A New Geršgorin-Type Eigenvalue Inclusion Set. Electronic Transactions on Numerical Analysis, 18, 73-80.
[4]  Cvetković, L. (2006) H-Matrix Theory vs. Eigenvalue Localization. Numerical Algorithms, 42, 229-245. https://doi.org/10.1007/s11075-006-9029-3
[5]  Cvetković, L., Kostić, V., Bru, R. and Pedroche, F. (2011) A Simple Generalization of Geršgorin’s Theorem. Advances in Computational Mathematics, 35, 271-280.
https://doi.org/10.1007/s10444-009-9143-6
[6]  Li, C.Q. and Li, Y.T. (2011) Generalizations of Brauer’s Eigenvalue Localization Theorem. Electronic Journal of Linear Algebra, 22, 1168-1178.
https://doi.org/10.13001/1081-3810.1500
[7]  Varga, R.S. and Krautstengl, A. (1999) On Geršgorin-Type Problems and Ovals of Cassini. Electronic Transactions on Numerical Analysis, 8, 15-20.
[8]  Huang, T.Z. (1995) A Note on Generalized Diagonally Dominant Matrices. Linear Algebra and its Applications, 225, 237-242. https://doi.org/10.1016/0024-3795(93)00368-A
[9]  Brauer, A. (1947) Limits for the Characteristic Roots of a Matrix II. Duke Mathematical Journal, 14, 21-26. https://doi.org/10.1215/S0012-7094-47-01403-8
[10]  Minkowski, H. (1900) Zur Theorieder Einheitenin den algebraischen Zahlkörpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1900, 90-93.
[11]  Lévy, L. (1881) Sur le possibilité du léquibreélectrique. Comptes Rendus Mathematique Academie des Sciences, Paris, 93, 706-708.
[12]  Geršgorin, S. (1931) Über die Abgrenzung der Eigenwerte einer Matrix. Izvestiya RAN. Seriya Matematicheskaya, 7, 749-754.
[13]  Desplanques, J. (1887) Théoèm dálgébre. J. de Math. Spec, 9, 12-13.
[14]  Taussky, O. (1948) Bounds for Characteristic Roots of Matrices. Duke Mathematical Journal, 15, 1043-1044. https://doi.org/10.1215/S0012-7094-48-01593-2
[15]  Taussky, O. (1949) A Recurring Theorem on Determinants. The American Mathematical Monthly, 56, 672-676. https://doi.org/10.2307/2305561
[16]  Varga, R.S. (2001) Geršgor-in-Type Eigenvalue Inclusion Theorems and Their Sharpness. Electronic Transactions on Numerical Analysis, 12, 113-133.
[17]  Varga, R.S. (2004) Geršgorin and His Circles. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-17798-9
[18]  Ostrowski, A. (1951) über das Nichverschwinder einer Klasse von Determinanten und die Lokalisierung der charakterischen Wurzeln von Matrizen. Compositio. Mathematica, 9, 209-226.
[19]  Hadjidimos, A. (2012) Irreducibility and Extensions of Ostrowski’s Theorem. Linear Algebra and its Applications, 436, 2156-2168. https://doi.org/10.1016/j.laa.2011.11.035

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133