全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Li Ions on Al Electrodeposition from Dimethylsulfone

DOI: 10.4236/jsemat.2018.84010, PP. 110-125

Keywords: Electrodeposition, Aluminum, Lithium, Nuclear Magnetic Resonance, Dimethylsulfone

Full-Text   Cite this paper   Add to My Lib

Abstract:

The influence of LiCl coexistence with Al electrodeposition was investigated in a dimethyl sulfone, DMSO2, bath containing AlCl3 at 403 K. The electrochemical behaviors of Li and Al ions were examined using Pt electrodes in the bath and the deposition mechanism was analyzed by cyclic voltammetry, CV, with an Al reference electrode in the bath. The coexistence of LiCl in the AlCl3-DMSO2 bath inhibited the cathodic current corresponding to Al deposition in the CV experiment. The amount of ca. 500 μmol Al deposits was obtained in constant potential electrolysis for 1 h at –2 V in the bath with 10 mol% AlCl3. However, it decreased to 140 μmol Al in the bath with 10 mol% AlCl3 and 5 mol% LiCl. It was clarified that LiCl addition led to the formation of Li(DMSO2)+ more than the formation of \"\"?from NMR measurement for the baths. This results in the suppression of Al deposition because LiCl inhibits the formation of \"\" complex ions, which is said to be necessary for Al electrodeposition.

References

[1]  El Abedin, S.Z., Moustafa, E.M., Hempelmann, R., Natter, H. and Endres, F. (2005) Additive Free Electrodeposition of Nanocrystalline Aluminium in a Water and Air Stable Ionic Liquid. Electrochemistry Communications, 7, 1111-1116.
https://doi.org/10.1016/j.elecom.2005.08.010
[2]  Chang, J.K., Chen, S.Y., Tsai, W.T., Deng, M.J. and Sun, I.W. (2007) Electrodeposition of Aluminium on Magnesium Alloy in Aluminium Chloride (AlCl3)-1-Ethyl-3-Methylimidazolium Chloride (EMIC) Ionic Liquid and Its Corrosion Behavior. Electrochemistry Communications, 9, 1602-1606.
https://doi.org/10.1016/j.elecom.2007.03.009
[3]  Endres, F., Abbott, A.P. and MacFarlane, D.R. (2008) Electrodeposition from Ionic Liquids. Wiley-VCH, Weinheim.
https://doi.org/10.1002/9783527622917
[4]  Barchi, L., Bardi, U., Caporali, S., Fantini, M., Scrivani, A. and Scrivani, A. (2010) Electroplated Bright Aluminium Coatings for Anticorrosion and Decorative Purposes. Progress in Organic Coatings, 67, 146-151.
https://doi.org/10.1016/j.porgcoat.2009.10.017
[5]  Abbott, A., Qiu, F., Abood, H., Ali, M. and Ryder, K. (2010) Double Layer, Diluent and Anode Effects upon the Electrodeposition of Aluminium from Chloroaluminate Based Ionic Liquids. Physical Chemistry Chemical Physics, 12, 1862-1872.
https://doi.org/10.1039/B917351J
[6]  Takahashi, S., Akimoto, K. and Saeki, I. (1989) Aluminum Plating From The Room Temperature Molten Salt Electrolyte. Journal of the Surface Finishing Society of Japan, 40, 134-135.
[7]  Abbott, A.P., Eardley, C.A., Farley, N.R.S., Griffith, G.A. and Pratt, A. (2001) Electrodeposition of Aluminium and Aluminium/Platinum Alloys from AlCl3/Benzyltrime-thylammonium Chloride Room Temperature Ionic Liquids. Journal of Applied Electrochemistry, 31, 1345-1350.
https://doi.org/10.1023/A:1013800721923
[8]  Liao, Q., Pitner, W.R., Stewart, G., Hussey, C.L. and Stafford, G.R. (1997) Electrodeposition of Aluminum from the Aluminum Chloride-1-Methyl-3-Ethylimidazolium Chloride Room Temperature Molten Salt + Benzene. Journal of Electrochemical Society, 14, 4936-4943.
[9]  Hurley, F.H. and Wier, T.P. (1951) The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of Electrochemical Society, 98, 207-212.
https://doi.org/10.1149/1.2778133
[10]  Jafarian, M., Gobal, F., Danaee, I. and Mahjani, M.G. (2007) Impedance Spectroscopy Study of Aluminum Electrocrystallization from Basic Molten Salt (AlCl3-NaC1-KC1). Electrochimica Acta, 52, 5437-5443.
https://doi.org/10.1016/j.electacta.2007.02.068
[11]  Jafarian, M., Mahjani, M.G., Gobal, F. and Danaee, I. (2006) Electrodeposition of Aluminum from Molten AlCl3-NaC1-KC1 Mixture. Journal of Applied Electrochemistry, 36, 1169-1173.
https://doi.org/10.1007/s10800-006-9192-1
[12]  Fukumoto, M., Suzuki, T., Hara, M. and Narita, T. (2009) Effect of the Electrodeposition Temperature on the Cyclic-Oxidation Resistance of Ni Aluminide Containing Zr Formed by Molten-Salt Electrodeposition. Materials Transactions, 50, 335-340.
[13]  Charrier, C., Jacquot, P., Denisse, E., Millet, J.P. and Mazille, H. (1997) Aluminium and Ti/Al Multilayer PVD Coatings for Enhanced Corrosion Resistance. Surface and Coatings Technology, 90, 29-34.
https://doi.org/10.1016/S0257-8972(96)03080-0
[14]  Yang, D., Jonnalagadda, R., Rogers, B.R., Hillman, J.T., Foster, R.F. and Cale, T.S. (1998) Texture and Surface Roughness of PRCVD Aluminum Films. Thin Solid Films, 332, 312-318.
https://doi.org/10.1016/S0040-6090(98)01034-7
[15]  Paredes, R.S.C., Amico, S.C. and d’Oliveira, A.S.C.M. (2006) The Effect of Roughness and Pre-Heating of the Substrate on the Morphology of Aluminium Coatings Deposited by Thermal Spraying. Surface and Coatings Technology, 200, 3049-3055.
https://doi.org/10.1016/j.surfcoat.2005.02.200
[16]  Hussey, T.S., Koczak, M.J., Smith, R.W. and Kalidindi, S.R. (1997) Electrodeposition of Aluminum in Molten AlCl3-n-Butylpyridinium Chloride Electrolyte. Materials Science and Engineering: A, 229, 137-146.
https://doi.org/10.1016/S0921-5093(97)80109-8
[17]  Bose, S. (2007) High Temperature Coatings. Elsevier, Butterworth Heinemann, 71-97.
https://doi.org/10.1016/B978-075068252-7/50007-X
[18]  Houngninou, C., Chevalier, S. and Larpin, J.P. (2004) Synthesis and Characterisation of Pack Cemented Aluminide Coatings on Metals. Applied Surface Science, 236, 256-269.
https://doi.org/10.1016/j.apsusc.2004.04.026
[19]  Chu, M.S. and Wu, S.K. (2003) The Improvement of High Temperature Oxidation of Ti-50Al by Sputtering Al Film and Subsequent Interdiffusion Treatment. Acta Materialia, 51, 3109-3120.
https://doi.org/10.1016/S1359-6454(03)00123-X
[20]  Zhong, D., Moore, J.J., Disam, J., Thiel, S. and Dahan, I. (1999) Deposition of NiAl Thin Films from NiAl Compound Target Fabricated via Combustion Synthesis. Surface and Coatings Technology, 120-121, 22-27.
https://doi.org/10.1016/S0257-8972(99)00334-5
[21]  Wang, D., Shi, Z. and Zou, L. (2003) A Liquid Aluminum Corrosion Resistance Surface on Steel Substrate. Applied Surface Science, 214, 304-311.
https://doi.org/10.1016/S0169-4332(03)00505-1
[22]  Kobayashi, S. and Yakou, T. (2002) Control of Intermetallic Compound Layers at Interface between Steel and Aluminum by Diffusion-Treatment. Materials Science and Engineering: A, 338, 44-53.
https://doi.org/10.1016/S0921-5093(02)00053-9
[23]  Gálová, M. (1980) Electrodeposition of Aluminium from Organic Aprotic Solvents. Surface Technology, 11, 357-369.
https://doi.org/10.1016/0376-4583(80)90053-9
[24]  Zhao, Y. and VanderNoot, T.J. (1997) Electrodeposition of Aluminium from Nonaqueous Organic Electrolytic Systems and Room Temperature Molten Salts. Electrochimica Acta, 42, 3-13. https://doi.org/10.1016/0013-4686(96)00080-1
[25]  Lehmkuhl, H., Mehler, K. and Landau, U. (1990) The Principles and Techniques of Electrolytic Aluminum Deposition and Dissolution in Organoaluminum Electrolytes. In: Gerischer, H. and Tobias, C.W., Eds., Advances in Electrochemical Science and Engineering, Vol. 3, VCH Verlagsgesellschaft, Weinheim, 165.
[26]  Simka, W., Puszczyk, D. and Nawrat, G. (2009) Electrodeposition of Metals from Non-Aqueous Solutions. Electrochimica Acta, 54, 5307-5319.
https://doi.org/10.1016/j.electacta.2009.04.028
[27]  Nakamura, K. and Kitada, A. (1997) Electrodeposition of Aluminum from AlCl3/Glyme Solutions at Room Temperature. Electrochimica Acta, 42.
[28]  Liu, L., Lu, X., Cai, Y., Zheng, Y. and Zhang, S. (2012) Influence of Additives on the Speciation, Morphology, and Nanocrystallinity of Aluminium Electrodeposition. Australian Journal of Chemistry, 65, 1523-1528.
https://doi.org/10.1071/CH12305
[29]  Wilkes, J.S. (2007) Molten Salts and Ionic Liquids: Are They Not the same Thing? ECS Transactions, 35, 3-7.
[30]  Endres, F. and El Abedin, S.Z. (2006) Air and Water Stable Ionic Liquids in Physical Chemistry. Physical Chemistry Chemical Physics, 8, 2101.
https://doi.org/10.1039/b600519p
[31]  Yang, C.-C. (1994) Electrodeposition of Aluminum in Molten AlCl3-n-Butylpyridinium Chloride Electrolyte. Materials Chemistry and Physics, 37, 355-361.
https://doi.org/10.1016/0254-0584(94)90175-9
[32]  Yue, G., Lu, X., Zhu, Y., Zhang, X. and Zhang, S. (2006) Electrodeposition of Aluminium from Ionic Liquids: Part I Electrodeposition and Surface Morphology of Aluminium from Aluminium Chloride (AlCl3)–1-Ethyl-3-Methylimidazolium Chloride ([EMIm]Cl) Ionic Liquids. Surface and Coatings Technology, 201, 1-9.
https://doi.org/10.1016/j.surfcoat.2005.10.046
[33]  Legrand, L., Heintz, M., Tranchant, A. and Messina, R. (1995) Sulfone-Based Electrolytes for Aluminum Electrodeposition. Electrochimica Acta, 40, 1711-1716.
https://doi.org/10.1016/0013-4686(95)00019-B
[34]  Hirato, T., Fransaer, J. and Celis, J.-P. (2001) Electrolytic Codeposition of Silica Particles with Aluminum from AlCl3-Dimethylsulfone Electrolytes. Journal of the Electrochemical Society, 148, C280-C283.
https://doi.org/10.1149/1.1354616
[35]  Miyake, M., Tajikara, S. and Hirato, T. (2011) Fabrication of TiAl3 Coating on TiAl-Based Alloy by Al Electrodeposition from Dimethylsulfone Bath and Subsequent Annealing. Surface and Coatings Technology, 205, 5141-5146.
https://doi.org/10.1016/j.surfcoat.2011.05.019
[36]  Jiang, T., Brym, M.J.C., Dube, G., Lasia, A. and Brisard, G.M. (2007) Studies on the AlCl3/Dimethylsulfone (DMSO2) Electrolytes for the Aluminum Deposition Processes. Surface and Coatings Technology, 201, 6309-6317.
https://doi.org/10.1016/j.surfcoat.2006.11.035
[37]  Legrand, L., Tranchant, A. and Messina, R. (1994) Electrodeposition Studies of Aluminum on Tungsten Electrode from DMSO2 Electrolytes Determination of AlIII Species Diffusion Coefficients. Journal of the Electrochemical Society, 141, 378-382.
https://doi.org/10.1149/1.2054735
[38]  Legrand, L., Tranchant, A., Messina, R., Romain, F. and Lautie, A. (1996) Raman Study of Aluminum Chloride-Dimethylsulfone Solutions. Inorganic Chemistry, 35, 1310-1312.
https://doi.org/10.1021/ic941455q
[39]  Miyake, M., Motonami, H. and Hirato, T. (2012) Iron Aluminide Coatings by Electrodepsotion of Aluminum from an Organic Bath and Subsequent Annealing. ISIJ International, 52, 2273-2277.
[40]  Shiomi, S., Miyake, M. and Hirato, T. (2012) Electrodeposition of Bright Al-Zr Alloy Coatings from Dimethylsulfone-Based Baths. Journal of the Electrochemical Society, 159, D225-D229.
https://doi.org/10.1149/2.079204jes
[41]  Fransaer, J., Leunis, E., Hirato, T. and Celis, J.-P. (2002) Aluminium Composite Coatings Containing Micrometre and Nanometre-Sized Particles Electroplated from a Non-Aqueous Electrolyte. Journal of Applied Electrochemistry, 32, 123-128.
https://doi.org/10.1023/A:1014738011603
[42]  Legrand, L., Chassaing, E., Chausse, A. and Messina, R. (1998) RDE and Impedance Study of Anodic Dissolution of Aluminium in Organic AlCl3/Dimethylsulfone Electrolytes. Electrochimica Acta, 43, 3109-3115.
https://doi.org/10.1016/S0013-4686(98)00065-6
[43]  Gaylord Chemical Company (2007) Dimethyl Sulfone (DMSO2) Physical Properties.
[44]  Nakayama, Y., Senda, Y., Kawasaki, H., Koshitani, N., Hosoi, S., Kudo, Y., Morioka, H. and Nagamine, M. (2015) Sulfone-Based Electrolytes for Aluminium Rechargeable Batteries. Physical Chemistry Chemical Physics, 17, 5758.
https://doi.org/10.1039/C4CP02183E
[45]  Pereira-Ramos, J.P., Messina, R. and Perichon, J. (1986) Electrochemical Formation of LiAl Alloy in Molten Dimethylsulfone at 150 °C. Journal of Electroanalytical Chemistry, 209, 283-296. https://doi.org/10.1016/0022-0728(86)80554-X
[46]  Legrand, L., Tranchant, A. and Messina, R. (1996) Aluminium Behaviour and Stability in AlCl3DMSO2 Ctrolyte. Electrochimica Acta, 41, 2715-2720.
https://doi.org/10.1016/0013-4686(96)00126-0
[47]  Kitagawa, S., Mizuno, M. and Maekawa, M. (2008) Solution and Solid-State NMR of Multinuclear Species. Sankyo Publishing Co.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413