全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum Mechanical Study on the π-π Stacking Interaction and Change in Conformation of Phenolic Systems with Different Intermolecular Rotations

DOI: 10.4236/cc.2018.64006, PP. 71-86

Keywords: Phenolic System, π-π Stacking, B3LYP, M062X

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aromatic systems like phenol, diphenol, cyano benzene, chloro benzene, aniline etc shows effective π-π stacking interactions, long range van der Waals forces; ion-π interactions etc. and these forces of interactions play an crucial role in the stability of stacked π-dimeric system. On the other hand, substituents and conformational change in the stacked dimmers of aromatic system may also change the stability of different stacked dimers. In this current study, stacked phenolic dimmers (both phenol and diphenol) have been taken for investigation of the stacking π-π interaction. But, the stacking interactions are also greatly affected by the conformational change with internal rotation (i.e. dihedral angle, φ) between the stacked dimers. It is generally accepted that larger basis sets are required for the highly accurate calculation of interaction energies for any stacked aromatic models. But, it has recently been reported that M062X/6-311++G(d,p) basis set is effectively better than that of B3LYP/6-311++G(d,p) for determining the interaction energies for any kind of long range interaction in aromatic systems. Therefore, all the calculations were carried out by using M062X/6-311++G(d,p) basis set. However, in most of the cases the calculated π-π stacking interaction energies show almost same result for both DFT and ab initio methods.

References

[1]  Kool, E.T., Morales, J.C. and Guckian, K.M. (2000) Mimicking the Structure and Function of DNA: Insights into DNA Stability and Replication. Angewandte Chemie, 39, 900-1009.
https://doi.org/10.1002/(SICI)1521-3773(20000317)39:6<990::AID-ANIE990>3.0.CO;2-0
[2]  Hunter, C.A., Lawson, K.R., Perkins, J. and Urch, C.J. (2001) Aromatic Interactions. Journal of the Chemical Society, Perkin Transactions 2, 5, 651-669.
https://doi.org/10.1039/b008495f
[3]  Waters, M.L. (2002) Aromatic Interactions in Model Systems. Current Opinion in Chemical Biology, 6, 736-741.
https://doi.org/10.1016/S1367-5931(02)00359-9
[4]  Meyer, E.A., Castellano, R.K. and Diederich, F. (2003) Interactions with Aromatic Rings in Chemical and Biological Recognition. Angewandte Chemie, 42, 1210-1250.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200390319
https://doi.org/10.1002/anie.200390319
[5]  Sarkhel, S., Rich, A. and Egli, M. (2003) Water-Nucleobase “Stacking”:? H-π and Lone Pair-π Interactions in the Atomic Resolution Crystal Structure of an RNA Pseudoknot. Journal of American Chemical. Society, 125, 8998-8999.
https://doi.org/10.1021/ja0357801
[6]  Coates, G.W., Dunn, A.R., Henling, L.M., Dougherty, D.A. and Grubbs, R.H. (1997) Phenyl-Perfluorophenyl Stacking Interactions:? A New Strategy for Supermolecule Construction. Angewandte Chemie, 36, 248-251.
https://doi.org/10.1002/anie.199702481
[7]  Suzuki, M., Amano, N., kakinuma, J. and Tateno, M. (1997) Use of a 3D Structure Data Base for Understanding Sequence-Dependent Conformational Aspects of DNA. Journal of Molecular Biology, 274, 421-435.
https://doi.org/10.1006/jmbi.1997.1406
[8]  Mathews, D.H, Sabina, J., Zuker, M. and Turner, D.H. (1999) Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure. Journal of Molecular Biology, 288, 911-970.
https://doi.org/10.1006/jmbi.1999.2700
[9]  Bommarito, S., Peyret, N. and Santa Lucia Jr., J. (2000) Thermodynamic Parameters for DNA Sequences with Dangling Ends. Nucleic Acids Research, 28, 1929-1934.
https://doi.org/10.1093/nar/28.9.1929
[10]  Di Fenza, A., Heine, A., Koert, U. and Klebe, G. (2007) Understanding Binding Selectivity toward Trypsin and Factor Xa: The Role of Aromatic Interactions. ChemMedChem, 2, 297-308.
https://doi.org/10.1002/cmdc.200600185
[11]  Georgia, B.M., Marc, G. and Anthony, K.R. (1998) π-Stacking Interactions: ALIVE AND WELL IN PROTEINS. Journal of Biological Chemistry, 273, 15458-15463.
https://doi.org/10.1074/jbc.273.25.15458
[12]  Sal-Man, N., Gerber, D., Bloch, I. and Slai, Y. (2007) Specificity in Transmembrane Helix-Helix Interactions Mediated by Aromatic Residues. Journal of Biological Chemistry, 282, 19753-19761.
https://doi.org/10.1074/jbc.M610368200
[13]  Cozzi, F., Ponzini, F., Annunziata, R., Cinquini, M. and Siegel, J.S. (1995) Polar Interaction between Stacked π Systems in Flourinated 1,8-Diarylnapthalenes: Imortance of Quardruple Moments in Molecular Recognition. Angewandte Chemie, 34, 1019-1020.
https://doi.org/10.1002/anie.199510191
[14]  Mark, J.R. and Marcey, L.W. (2002) Unexpected Substituent Effects in Offset π?π Stacked Interactions in Water. Journal of the American Chemical Society, 124, 1860-1862.
https://doi.org/10.1021/ja016508z
[15]  Zhao, Y. and Truhlar, D. G. (2005) Benchmark Databases for Nonbonded Interactions and Their Use to Test Density Functional Theory. Journal of Chemical Theory and Computation, 1, 415-432.
https://doi.org/10.1021/ct049851d
[16]  Yi, M. and Scheiner, S. (1996) Proton Transfer in the [Phenol-NH3] + System: An Experimental and Ab initio Study. Chemical Physics Letters, 262, 567.
https://doi.org/10.1016/S0009-2614(96)01135-9
[17]  Brutschy, B. (1992) Ion-Molecule Reactions within Molecular Clusters. Chemical Reviews, 92, 1567-1587.
https://doi.org/10.1021/cr00015a005
[18]  Dopfer, O., Reiser, G., Muller-Dethlafs, K., Schlag, E.W. and Colson, S.D. (1994) Watching Proton Transfer in Real Time: Ultrafast Photoionization-Induced Proton Transfer in Phenol Ammonia Complex Cation. The Journal of Chemical Physics, 101, 974.
https://doi.org/10.1063/1.467752
[19]  Lipert, R.J. and Colson, S.D. (1988) Study of Phenol-Water Complexes Using Frequency-and Time-Resolved Pump-Probe Photoionization. The Journal of Chemical Physics, 89, 4579-4585.
https://doi.org/10.1063/1.454798
[20]  Lipert, R.J. and Colson, S.D. (1989) Deuterium Isotope Effects on S1 Radiationless Decay in Phenol and on Intermolecular Vibrations in the Phenol-Water Complex. Journal of Physical Chemistry, 93, 135-139.
https://doi.org/10.1021/j100338a030
[21]  Korenaga, T., Shoji, T., Onoue, K. and Sakai, T. (2009) Demonstration of the Existence of Intermolecular Lone Pair ? π Interaction between Alcoholic Oxygen and the C6F5 Group in Organic Solvent. Chemical Communications, 4678-4680.
https://doi.org/10.1039/b908752d
[22]  Alkorta, I., Rozas, I. and Elguero, J. (1997) An Attractive Interaction between the p-Cloud of C6F6 and Electron-Donor Atoms. Journal of Organic Chemistry, 62, 4687-4691.
https://doi.org/10.1021/jo970125v
[23]  Sinnokrot, M.O., Valeev, E.F. and Sherrill, C.D. (2002) Estimates of the Ab Initio Limit for π-π Interactions:? The Benzene Dimer. Journal of American Chemical Society, 124, 10887-10893.
https://doi.org/10.1021/ja025896h
[24]  Sinnokrot, M.O. and Sherill, C.D. (2004) Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer:? Sandwich, T-Shaped, and Parallel-Displaced Configurations. Journal of Physical Chemistry A, 108, 10200-10207.
https://doi.org/10.1021/jp0469517
[25]  Parthasarathi, R., Subramanian, V. and Sathyamurthy, N. (2005) Hydrogen Bonding in Phenol, Water, and Phenol-Water Clusters. Journal of Physical Chemistry A, 109, 843-850.
https://doi.org/10.1021/jp046499r
[26]  Monteiro, C.J.P., Pereira, M.M., Azenha, M.E. Burrows, H.D., Serpa, C., Arnaut, L.G., Tapia, M.J., Sarakha, M.P., Chung, W.W. and Navaratnam, S. (2005) A Comparative Study of Water Soluble 5,10,15,20-tetrakis(2,6-dichloro-3-sulfophenyl) Porphyrin and Its Metal Complexes as Efficient Sensitizers for Photodegradation of Phenols. Photochemical & Photobiological Sciences, 4, 617-624.
https://doi.org/10.1039/b507597a
[27]  Muller-Dethlefs, K. and Hobza, P. (2000) Noncovalent Interactions:? A Challenge for Experiment and Theory. Chemical Reviews, 100, 143-168.
https://doi.org/10.1021/cr9900331
[28]  Skotheim, T.A., Reynolds, J.R. and Elsenbaumer, R.L. (1997) Hand Book of Conducting Polymer. 2nd Edition, Marcel Dekker, New York.
[29]  Nalwa, H.S. (1997) Hand Book of Organic Conductive Molecules and Polymer Vol. 1-4. Wiley, New York.
[30]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewaki, V.G., Ortiz, J.V., Foresmann, J.B., Ciolowski, J., Stefanov, B.B., Namayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A. (2009) Gaussian 09. Gaussian Inc., Pittsburgh.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133