全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanostructured Ceramics of Potassium Sodium Bismuth Titanate: Hydrothermal Synthesis and Piezoelectric Response at Morphotropic Phase Boundary

DOI: 10.4236/njgc.2019.91001, PP. 1-14

Keywords: Perovskite Nanoceramics, Morphotropic Phase Boundary (MPB), Piezoceramic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Potassium Sodium Bismuth Titanate (KNBT) ceramics, with the general formula (1 - x)K0.5Bi0.5TiO3 -xNa0.5Bi0.5TiO3, have been synthesized following hydrothermal route, starting with solid solutions of pure perovskite nanoceramics of KBT and NBT in desired stoichiometric weight ratios, followed by sintering between 850°C and 1000°C for few hours. Pure KNBT nanoceramics with perovskite structure, having mean particle size around 30 nm, could be obtained. Morphology of the samples is found to depend strongly on composition. A change of composition results in a phase change, as evident from X-ray structure analysis. This phase change is a result of rhombohedral to tetragonal morphotropic phase boundary (MPB) in the sample with x around 0.80. Composition dependent occurrence of MPB leads to formation of needle like structures with micrometer length scales. These are typical of tetragonal lamellar structures, suggesting partial induction of tetragonal polar order from rhombohedral structure at MPB. Dielectric and piezoelectric properties, such as dielectric constant and loss, piezoelectric coefficients and figures of merit, exhibit threshold maxima in their values at the composition corresponding to MPB. These values reported for

References

[1]  Uchino, K. (2000) Ferroelectric Devices. Marcel Dekker, New York.
[2]  Nair, K.M. (Ed.) (2004) Proceedings of the High Strain Piezoelectric Materials, Devices and Applications, and Advanced Dielectric Materials and Multilayer Electric Devices Symposia, Westerville, American Ceramic Society.
[3]  Lupascu, D.C. and Rodel, J. (2005) Fatigue in Bulk Lead Zirconate Titanate Actuator Materials. Advanced Engineering Materials, 7, 882-898.
[4]  Yan, H.X., Zhang, H.T., Ubic, R., Reece, M.J., Liu, J., Shen, Z.J. and Zhang, Z. (2005) A Lead-Free High Curie Point Ferroelectric Ceramic, CaBi2Nb2O9. Advanced Materials, 17, 1261-1267.
[5]  Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J. and Jo, W. (1999) Lanthanum-Substituted Bismuth Titanate for Use in Non-Volatile Memories. Nature, 401, 682-685.
[6]  Chon, U., Jang, H.M., Kim, M.G. and Chang, C.H. (2002) Layered Perovskites with Giant Spontaneous Polarization for Non-Volatile Memories. Physical Review Letters, 89, 087601.
[7]  Cohen, R.E. (1992) Origin of Ferroelectricity in Perovskite Oxides. Nature, 358, 136-138.
[8]  Gao, J., Hu, X., Liu, Y., Wang, Y., Ke, X., Wang, D., Zhong, L. and Ren, X. (2017) Ferroelectric Domain Walls Approaching Morphotropic Phase Boundary. The Journal of Physical Chemistry C, 121, 2243-2250.
[9]  Ahart, M., Somayazulu, M., Cohen, R.E., Ganesh, P., Dera, P., Mao, H.-K., Hemley, R.J., Ren, Y., Liermann, P. and Wu, Z. (2008) Origin of Morphotropic Phase Boundaries in Ferroelectrics. Nature, 451, 545-548.
[10]  Wu, J., Xiao, D. and Zhu, J. (2015) Potassium-Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present and Future of Phase Boundaries. Chemical Reviews, 115, 2559-2595.
[11]  Jo, W., Daniels, J.E., Jones, J.L., Tan, X., Thomas, P.A., Damjanovic, D. and Rodel, J. (2011) Evolving Morphotropic Phase Boundary in Leadfree (Bi1/2Na1/2) TiO3-BaTiO3 (Bi1/2Na1/2) TiO3-BaTiO3 Piezoceramics. Journal of Applied Physics, 109, 014110-7.
[12]  Wang, C.-M., Zhao, L., Wang, J.-F., et al. (2009) Piezoelectric and Dielectric Properties of Cerium-Modified Aurivillius Type K0.5La0.5Bi4Ti4O15 Ceramics. Materials Chemistry and Physics, 114, 1004-1007.
[13]  Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I. and Krainik, N. (1961) New Ferroelectrics of Complex Composition. Soviet Physics, Solid State, 2, 2651-2654.
[14]  Sasaki, A., Chiba, T., Mamiya, Y. and Otsuki, E. (1999) Dielectric and Piezoelectric Properties of (Bi0.5Na0.5) TiO3-(Bi0.5K0.5) TiO3 Systems. Japanese Journal of Applied Physics, 38, 5564-5567.
https://doi.org/10.1143/JJAP.38.5564
[15]  Rodel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T. and Damjanovic, D. (2009) Perspective on the Development of Lead-Free Piezoceramics. Journal of the American Ceramic Society, 92, 1153-1177.
[16]  Li, Y.M., Chen, W., Zhou, J., Xu, Q., Sun, H.J. and Liao, M.S. (2005) Dielectric and Ferroelectric Properties of Lead Free Na0.5Bi0.5TiO3K0.5Bi0.5TiO3 Ferroelectric Ceramics. Ceramics International, 31, 139-142.
https://doi.org/10.1016/j.ceramint.2004.04.010
[17]  Sugimoto, T. (2001) Monodispersed Particles. Elsevier, Amsterdam, 187.
[18]  Waseda, Y. and Muramatsu, A. (2003) Morphology Control of Materials and Nanoparticles. Springer, Berlin, 25.
[19]  Horn, J.A., Zhang, S.C., Selvaraj, U., Messing, G.L. and Mc Kinstry, S.T. (1999) Templated Grain Growth of Textured Bismuth Titanate. Journal of the American Ceramic Society, 82, 921-926.
https://doi.org/10.1111/j.1151-2916.1999.tb01854.x
[20]  Kanie, K., Numamoto, Y., Tsukamoto, S., Sasaki, T., Nakaya, M., Tani, J., Takahashi, H. and Muramatsu, A. (2011) Size-Controlled Hydrothermal Synthesis of Bismuth Sodium and Bismuth Potassium Titanate Fine Particles and Application to Lead-Free Piezoelectric Ceramics. Materials Transactions, 52, 1396-1401.
https://doi.org/10.2320/matertrans.M2010419
[21]  Ballantine Jr., D.S., White, R.M., Martin, S.J., Ricco, A.J., Frye, G.C. and Zellers, E.T. (1997) Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications. Academic Press, New York.
[22]  Nye, J.F. (1985) Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, London.
[23]  Jaffe, B., Cook, W.R. and Jaffe, H. (1971) Piezoelectric Ceramics. Academic Press, New York.
[24]  Tani, T. (1998) Crystalline-Oriented Piezoelectric Bulk Ceramics with a Perovskite- Type Structure. Journal of the Korean Physical Society, 32, S1217-S1220.
[25]  Kanie, K., Sakai, H., Tani, J., Takahashi, H. and Muramatsu, A. (2007) Synthesis of Bismuth Sodium Titanate Fine Particles with Different Shapes by the Gel-Sol Method. Materials Transactions, 48, 2174-2178.
[26]  Moulson, A.J. and Herbert, J.M. (2003) Electroceramics: Materials, Properties and Applications. John Wiley & Sons Ltd., New York.
https://doi.org/10.1002/0470867965
[27]  Gai, Z.-G., Wang, J.-F., Zhao, M.-L., et al. (2008) The Effect of (Li,Ce) Doping in Aurivillius Phase Material Na0.25K0.25Bi4.5Ti4O15. Scripta Materialia, 59, 115-118.
[28]  Miyayama, M. and Noguchi, Y. (2005) Polarization Properties and Oxygenvacancy Distribution of SrBi2Ta2O9 Ceramics Modified by Ce and Pr. Journal of the European Ceramic Society, 25, 2477-2482.
[29]  Xue, D., Zhou, Y., Bao, H., Zhou, C., Gao, J. and Ren, X. (2011) Elastic, Piezoelectric, and Dielectric Properties of Ba (Zr0.2Ti0.8) O350(Ba0.7Ca0.3) TiO3 Pb-Free Ceramic at the Morphotropic Phase Boundary. Journal of Applied Physics, 109, 054110-6.
[30]  Octonicar, M., Skapin, S.D. and Jancar, B. (2011) TEM Analyses of the Local Crystal and Domain Structure on (Na1-xKx)0.5Bi0.5TiO3 Perovskite Ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58, 1928-1938.
https://doi.org/10.1109/TUFFC.2011.2033
[31]  Hooker, M.W. (1998) Properties of PZT-Based Piezoelectric Ceramics between 150 and 250 °C. Technical Report NASA, CR-1998-208708.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980236888.pdf
[32]  Karapuzha, A.S., James, N.K., Khanbareh, H., van der Zwaag, S. and Groen, W.A. (2016) Structure, Dielectric and Piezoelectric Properties of Donor Doped PZT Ceramics across the Phase Diagram. Ferroelectrics, 504, 160-171.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133