全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Subcutaneous Sustained-Release of Poly-Arginine Ameliorates Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease

DOI: 10.4236/aad.2018.74011, PP. 153-182

Keywords: L-Arginine, Memory, LTP, Amyloid Beta, Cytotoxicity, Apoptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly-arginine peptides are a promising class of bioactive compounds that are capable of crossing the blood-brain barrier (BBB) and present neuroprotective properties. In this study, we test the activity of poly-arginine peptides in a triple-transgenic mouse model of Alzheimer’s disease. To identify the best candidate, we examined the relative neuroprotective efficacy of the compounds with various lengths (R7, R9, and R11) via assessment of memory acquisition, long-term hippocampal potentiation (LTP), and cytotoxicity. Also, we explored the expression profiles of hundreds of key cell signaling proteins, and perform a high content antibody microarray comparative analysis of brain samples. The chronically treated animals with poly-arginine R9 show significantly improved acquisition of memory. This compound rescues hippocampal LTP deteriorated by Aβ at a better rate than other agents tested in this study and induces cellular pathways involved in neuroprotection and neuroplasticity. The treatment escalates the expression levels of Synapsin Ia in the mice hippocampi; however, it has no significant effect upon the rate of beta-amyloidosis. Poly-arginine R9 peptide is a well-tolerated compound that crosses the BBB and presents unique neuroprotective qualities. The substance halters the development of AD symptoms in a murine model and can be recommended for clinical investigation.

References

[1]  Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M. and Karagiannidou, M. (2016) World Alzheimer Report 2016 Improving Healthcare for People Living with Dementia. Coverage, Quality and Costs Now and in the Future. Alzheimer’s Disease International, 1-140.
https://www.alz.co.uk/research/world-report-2016
[2]  Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W. and Ferri, C.P. (2013) The Global Prevalence of Dementia: A Systematic Review and Metaanalysis. Alzheimer’s & Dementia, 9, 63-75.
https://doi.org/10.1016/j.jalz.2012.11.007
[3]  Prince, M., Wimo, A., Guerchat, M., Ali, G.-C., Wu, Y.-T. and Prina, M. (2015) World Alzheimer Report 2015. Alzheimer’s Disease International, 1-84.
[4]  Torre, L. and Rebecca Siegel, A.J. (2015) Global Cancer Facts & Figures. 3rd Edition, American Cancer Society, 1-64.
[5]  Pajouhesh, H. and Lenz, G.R. (2005) Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRx, 2, 541-553.
https://doi.org/10.1602/neurorx.2.4.541
[6]  Gotanda, Y., Wei, F.Y., Harada, H., Ohta, K., Nakamura, K.I. and Tomizawa, K. (2014) Ushijima, Efficient transduction of 11 Poly-Arginine Peptide in an Ischemic Lesion of Mouse Brain. Journal of Stroke and Cerebrovascular Diseases, 23, 2023-2030.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.02.027
[7]  Meloni, B.P., Milani, D., Cross, J.L., Clark, V.W., Edwards, A.B., Anderton, R.S., Blacker, D.J. and Knuckey, N.W. (2017) Assessment of the Neuroprotective Effects of Arginine-Rich Protamine Peptides, Poly-Arginine Peptides (R12-Cyclic, R22) and Arginine-Tryptophan-Containing Peptides Following in Vitro Excitotoxicity and/or Permanent Middle Cerebral Artery Occlusion in Rats. NeuroMolecular Medicine, 9, 271-285.
https://doi.org/10.1007/s12017-017-8441-2
[8]  Meloni, B.P., Brookes, L.M., Clark, V.W., Cross, J.L., Edwards, A.B., Anderton, R.S., Hopkins, R.M., Hoffmann, K. and Knuckey, N.W. (2015) Poly-Arginine and Arginine-Rich Peptides Are Neuroprotective in Stroke Models. Journal of Cerebral Blood Flow & Metabolism, 35, 993-1004.
https://doi.org/10.1038/jcbfm.2015.11
[9]  Ferrer-Montiel, A.V., Merino, J.M., Blondelle, S.E., Perez-Payà, E., Houghten, R.A. and Montal, M. (1998) Selected Peptides Targeted to the NMDA Receptor Channel Protect Neurons from Excitotoxic Death. Nature Biotechnology, 16, 286-291.
https://doi.org/10.1038/nbt0398-286
[10]  Marshall, J., Wong, K.Y., Rupasinghe, C.N., Tiwari, R., Zhao, X., Berberoglu, E.D., Sinkler, C., Liu, J., Lee, I., Parang, K., Spaller, M.R., Hüttemann, M. and Goebel, D.J. (2015) Inhibition of N-Methyl-D-Aspartate-Induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-Induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. The Journal of Biological Chemistry, 290, 22030-22048.
https://doi.org/10.1074/jbc.M115.662791
[11]  Kadenbach, B., Arnold, S., Lee, I. and Hüttemann, M. (2004) The Possible Role of Cytochrome C Oxidase in Stress-Induced Apoptosis and Degenerative Diseases. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1655, 400-408.
https://doi.org/10.1016/j.bbabio.2003.06.005
[12]  Cabezas-Opazo, F.A., Vergara-Pulgar, K., Pérez, M.J., Jara, C., Osorio-Fuentealba, C. and Quintanilla, R.A. (2015) Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 509654.
https://doi.org/10.1155/2015/509654
[13]  Moreira, P.I., Carvalho, C., Zhu, X., Smith, M.A. and Perry, G. (2010) Mitochondrial Dysfunction Is a Trigger of Alzheimer’s Disease Pathophysiology. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1802, 2-10.
https://doi.org/10.1016/j.bbadis.2009.10.006
[14]  Cook, D.R., Gleichman, A.J., Cross, S.A., Doshi, S., Ho, W., Jordan-Sciutto, K.L., Lynch, D.R. and Kolson, D.L. (2011) NMDA Receptor Modulation by the Neuropeptide Apelin: Implications for Excitotoxic Injury. Journal of Neurochemistry, 118, 1113-1123.
https://doi.org/10.1111/j.1471-4159.2011.07383.x
[15]  MacDougall, G., Anderton, R.S., Edwards, A.B., Knuckey, N.W. and Meloni, B.P. (2017) The Neuroprotective Peptide Poly-Arginine-12 (R12) Reduces Cell Surface Levels of NMDA NR2B Receptor Subunit in Cortical Neurons; Investigation into the Involvement of Endocytic Mechanisms. Journal of Molecular Neuroscience, 61, 235-246.
https://doi.org/10.1007/s12031-016-0861-1
[16]  Ibanez, C., et al. (2012) Toward a Predictive Model of Alzheimer’s Disease Progression Using Capillary Electrophoresis-Mass Spectrometry Metabolomics. Analytical Chemistry, 84, 8532-8540.
https://doi.org/10.1021/ac301243k
[17]  Koga, Y., Akita, Y., Nishioka, J., Yatsuga, S., Povalko, N., Tanabe, Y., Fujimoto, S. and Matsuishi, T. (2005) L-Arginine Improves the Symptoms of Strokelike Episodes in MELAS. Neurology, 64, 710-712.
https://doi.org/10.1212/01.WNL.0000151976.60624.01
[18]  Ohtsuka, Y. and Nakaya, J. (2000) Effect of Oral Administration of L-Arginine on Senile Dementia. The American Journal of Medicine, 108, 439.
https://doi.org/10.1016/S0002-9343(99)00396-4
[19]  O’Kane, R.L., Vina, J.R., Simpson, I., Zaragozá, R., Mokashi, A. and Hawkins, R.A (2006) Cationic Amino Acid Transport across the Blood-Brain Barrier Is Mediated Exclusively by System y+. American Journal of Physiology-Endocrinology and Metabolism, 291, E412-E419.
https://doi.org/10.1152/ajpendo.00007.2006
[20]  Stoll, J., Wadhwani, K.C. and Smith, Q.R. (1993) Identification of the Cationic Amino Acid Transporter (System y+) of the Rat Blood-Brain Barrier. Journal of Neurochemistry, 60, 1956-1959.
https://doi.org/10.1111/j.1471-4159.1993.tb13428.x
[21]  Tachikawa, M. and Hosoya, K.-I. (2011) Transport Characteristics of Guanidino Compounds at the Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier: Relevance to Neural Disorders. Fluids and Barriers of the CNS, 8, 13.
https://doi.org/10.1186/2045-8118-8-13
[22]  Polis, B. and Samson, A.O. (2018) Arginase as a Potential Target in the Treatment of Alzheimer’s Disease. Advances in Alzheimer’s Disease, 7, 119-140.
https://doi.org/10.4236/aad.2018.74009
[23]  Fonar, G., Polis, B., Meirson, T., Maltsev, A. and Samson, A.O. (2018) Intracerebroventricular Administration of L-Arginine Improves Spatial Memory Acquisition in Triple Transgenic Mice via Reduction of Oxidative Stress and Apoptosis. Journal of Neuroscience, 9, 43-53.
[24]  Oddo, S., Caccamo, A., Shepherd, J.D., Murphy, M.P., Golde, T.E., Kayed, R., Metherate, R., Mattson, M.P., Akbari, Y. and LaFerla, F.M. (2003) Triple-Transgenic model of Alzheimer’s Disease with Plaques and Tangles: Intracellular Aβ and Synaptic Dysfunction. Neuron, 39, 409-421.
https://doi.org/10.1016/S0896-6273(03)00434-3
[25]  Milani, D., Knuckey, N.W., Anderton, R.S., Cross, J.L. and Meloni, B.P. (2016) The R18 Polyarginine Peptide Is More Effective than the TAT-NR2B9c (NA-1) Peptide When Administered 60 Minutes after Permanent Middle Cerebral Artery Occlusion in the Rat. Stroke Research and Treatment, 2016, Article ID: 2372710.
[26]  Milani, D., Bakeberg, M., Cross, J., Clark, V., Anderton, S., Blacker, D.J., Knuckey, N.W. and Meloni, B.P. (2018) Comparison of Neuroprotective Efficacy of Poly-Arginine R18 and R18D (D-Enantiomer) Peptides Following Permanent Middle Cerebral Artery Occlusion in the Wistar Rat and in Vitro Toxicity Studies. PLoS ONE, 13, e0193884.
https://doi.org/10.1371/journal.pone.0193884
[27]  Wehner, J.M. and Radcliffe, R.A. (2004) Cued and Contextual Fear Conditioning in Mice. Current Protocols in Neuroscience, 27, 8.5C.1-8.5C.14.
https://doi.org/10.1002/0471142301.ns0805cs27
[28]  Anagnostaras, S.G., Gale, G.D. and Fanselow, M.S. (2001) Hippocampus and Contextual Fear Conditioning: Recent Controversies and Advances. Hippocampus, 11, 8-17.
https://doi.org/10.1002/1098-1063(2001)11:1<8::AID-HIPO1015>3.0.CO;2-7
[29]  Gellért, L. and Varga, D.P. (2016) Locomotion Activity Measurement in an Open Field for Mice. Bio-Protocol, 6, 2-6.
https://doi.org/10.21769/BioProtoc.1857
[30]  Jung, J.Y., Roh, K.H., Jeong, Y.J., Kim, S.H., Lee, E.J., Kim, M.S., Oh, W.M., Oh, H.K. and Kim, W.J. (2008) Estradiol Protects PC12 Cells against CoCl2-Induced Apoptosis. Brain Research Bulletin, 76, 579-585.
https://doi.org/10.1016/j.brainresbull.2008.04.006
[31]  Scotter, E.L., Goodfellow, C.E., Graham, E.S., Dragunow, M. and Glass, M. (2010) Neuroprotective Potential of CB1 Receptor Agonists in an in Vitro Model of Huntington’s Disease. British Journal of Pharmacology, 160, 747-761.
https://doi.org/10.1111/j.1476-5381.2010.00773.x
[32]  Wan, J., Fu, A.K.Y., Ip, F.C.F., Ng, H.K., Hugon, J., Page, G., Wang, J.H., Lai, K.O., Wu, Z. and Ip, N.Y. (2010) Tyk2/STAT3 Signaling Mediates β-Amyloid-Induced Neuronal Cell Death: Implications in Alzheimer’s Disease. The Journal of Neuroscience, 30, 6873-6881.
https://doi.org/10.1523/JNEUROSCI.0519-10.2010
[33]  Yao, Z., Drieu, K. and Papadopoulos, V. (2001) The Ginkgo biloba Extract EGb 761 Rescues the PC12 Neuronal Cells from β-Amyloid-Induced Cell Death by Inhibiting the Formation of β-Amyloid-Derived Diffusible Neurotoxic Ligands. Brain Research, 889, 181-190.
https://doi.org/10.1016/S0006-8993(00)03131-0
[34]  Heo, H.J. and Lee, C.Y. (2005) Strawberry and Its Anthocyanins Reduce Oxidative Stress-Induced Apoptosis in PC12 Cells. Journal of Agricultural and Food Chemistry, 53, 1984-1989.
https://doi.org/10.1021/jf048616l
[35]  Gage, G.J., Kipke, D.R. and Shain, W. (2012) Whole Animal Perfusion Fixation for Rodents. Journal of Visualized Experiments, 65, e3564.
https://doi.org/10.3791/3564
[36]  Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabel, C.G. (2003) Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science, 300, 486-489.
https://doi.org/10.1126/science.1079469
[37]  Huttner, W.B., Schiebler, W., Greengard, P. and De Camilli, P. (1983) Synapsin I (Protein I), a Nerve Terminal-Specific Phosphoprotein. III. Its Association with Synaptic Vesicles Studied in a Highly Purified Synaptic Vesicle Preparation. Journal of Cell Biology, 96, 1374-1388.
https://doi.org/10.1083/jcb.96.5.1374
[38]  Sarvey, J.M., Burgard, E.C. and Decker, G. (1989) Long-Term Potentiation: Studies in the Hippocampal Slice. Journal of Neuroscience Methods, 28, 109-124.
https://doi.org/10.1016/0165-0270(89)90016-2
[39]  Holscher, C., Gengler, S., Gault, V.A., Harriott, P. and Mallot, H.A. (2007) Soluble Beta-Amyloid[25-35] Reversibly Impairs Hippocampal Synaptic Plasticity and Spatial Learning. European Journal of Pharmacology, 561, 85-90.
https://doi.org/10.1016/j.ejphar.2007.01.040
[40]  Song, S.-H. and Augustine, G.J. (2015) Synapsin Isoforms and Synaptic Vesicle Trafficking. Molecules and Cells, 38, 936-940.
https://doi.org/10.14348/molcells.2015.0233
[41]  Qin, S., Hu, X.Y., Xu, H. and Zhou, J.N. (2004) Regional Alteration of Synapsin I in the Hippocampal Formation of Alzheimer’s Disease Patients. Acta Neuropathologica, 107, 209-215.
https://doi.org/10.1007/s00401-003-0800-4
[42]  Peluffo, H., Acarin, L., Arís, A., González, P., Villaverde, A., Castellano, B. and González, B. (2006) Neuroprotection from NMDA Excitotoxic Lesion by Cu/Zn Superoxide Dismutase Gene Delivery to the Postnatal Rat Brain by a Modular Protein Vector. BMC Neuroscience, 7, 35.
https://doi.org/10.1186/1471-2202-7-35
[43]  Chang, J.W., Coleman, P.D. and O’Banion, M.K. (1996) Prostaglandin G/H synthase-2 (Cyclooxygenase-2) mRNA Expression is Decreased in Alzheimer’s Disease. Neurobiology of Aging, 17, 801-808.
https://doi.org/10.1016/0197-4580(96)00110-8
[44]  Sung, S., Yang, H., Uryu, K., Lee, E.B., Zhao, L., Shineman, D., Trojanowski, J.Q., Lee, V.M. and Pratico, D. (2004) Modulation of Nuclear Factor-κB Activity by Indomethacin Influences Aβ Levels but Not Aβ Precursor Protein Metabolism in a Model of Alzheimer’s Disease. The American Journal of Pathology, 165, 2197-2206.
https://doi.org/10.1016/S0002-9440(10)63269-5
[45]  Torner, L. (2016) Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology. Frontiers in Endocrinology, 7, 25.
https://doi.org/10.3389/fendo.2016.00025
[46]  Yu, X., Rajala, R.V.S., McGinnis, J.F., Li, F., Anderson, R.E., Yan, X., Li, S., Elias, R.V., Knapp, R.R., Zhou, X. and Cao, W. (2004) Involvement of Insulin/Phosphoinositide 3-Kinase/Akt Signal Pathway in 17β-Estradiol-Mediated Neuroprotection. The Journal of Biological Chemistry, 279, 13086-13094.
https://doi.org/10.1074/jbc.M313283200
[47]  Murray, B., Alessandrini, A., Cole, A.J., Yee, A.G. and Furshpan, E.J. (1998) Inhibition of the P44/42 MAP Kinase Pathway Protects Hippocampal Neurons in a Cell-Culture Model of Seizure Activity. Proceedings of the National Academy of Sciences of the United States of America, 95, 11975-11980.
https://doi.org/10.1073/pnas.95.20.11975
[48]  Stemmer, N., Strekalova, E., Djogo, N., Ploger, F., Loers, G., Lutz, D., Buck, F., Michalak, M., Schachner, M. and Kleene, R. (2013) Generation of Amyloid-β Is Reduced by the Interaction of Calreticulin with Amyloid Precursor Protein, Presenilin and Nicastrin. PLoS ONE, 8, e61299.
https://doi.org/10.1371/journal.pone.0061299
[49]  Budni, J., Bellettini-Santos, T., Mina, F., Lima Garcez, M. and Ioppi Zugno, A. (2015) The Involvement of BDNF, NGF and GDNF in Aging and Alzheimer’s Disease. Aging and Disease, 6, 331.
https://doi.org/10.14336/AD.2015.0825
[50]  Nimmrich, V. and Ebert, U. (2009) Is Alzheimer’s Disease a Result of Presynaptic Failure? Synaptic Dysfunctions Induced by Oligomeric Beta-Amyloid. Reviews in the Neurosciences, 20, 1-12.
https://doi.org/10.1515/REVNEURO.2009.20.1.1
[51]  Marsh, J., Bagol, S.H., Williams, R.S.B., Dickson, G. and Alifragis, P. (2017) Synapsin I Phosphorylation Is Dysregulated by Beta-Amyloid Oligomers and Restored by Valproic Acid. Neurobiology of Disease, 106, 63-75.
https://doi.org/10.1016/j.nbd.2017.06.011
[52]  Song, S.-H. and Augustine, G.J. (2016) Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons. Journal of Neuroscience, 36, 6742-6757.
https://doi.org/10.1523/JNEUROSCI.0011-16.2016
[53]  Chen, X., Guo, C. and Kong, J. (2012) Oxidative Stress in Neurodegenerative Diseases. Neural Regeneration Research, 7, 376-385.
[54]  Mclellan, M.E., Kajdasz, S.T., Hyman, B.T. and Bacskai, B.J. (2003) In Vivo Imaging of Reactive Oxygen Species Specifically Associated with Thioflavine S-Positive Amyloid Plaques by Multiphoton Microscopy. Journal of Neuroscience, 23, 2212-2217.
https://doi.org/10.1523/JNEUROSCI.23-06-02212.2003
[55]  Tainer, J.A., Getzoff, E.D., Richardson, J.S. and Richardson, D.C. (1983) Structure and Mechanism of Copper, Zinc Superoxide Dismutase. Nature, 306, 284-287.
https://doi.org/10.1038/306284a0
[56]  Polis, B., Elliott, E., Henn, H. and Samson, A.O. (2018) L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer’s Disease. Neurotherapeutics, 15, 1036-1054.
https://doi.org/10.1007/s13311-018-0669-5
[57]  Pellegrini, L., Passer, B.J., Tabaton, M., Ganjei, J.K. and D’Adamio, L. (1999) Alternative, Non-Secretase Processing of Alzheimer’s β-Amyloid Precursor Protein during Apoptosis by Caspase-6 and -8. The Journal of Biological Chemistry, 274, 21011-21016.
https://doi.org/10.1074/jbc.274.30.21011
[58]  Klaiman, G., Petzke, T.L., Hammond, J. and LeBlanc, A.C. (2008) Targets of Caspase-6 Activity in Human Neurons and Alzheimer Disease. Molecular & Cellular Proteomics, 7, 1541-1555.
https://doi.org/10.1074/mcp.M800007-MCP200
[59]  Leblanc, A.C. (2013) Caspase-6 as a Novel Early Target in the Treatment of Alzheimer’s Disease. European Journal of Neuroscience, 37, 2005-2018.
https://doi.org/10.1111/ejn.12250
[60]  Wang, Y., Luo, W. and Reiser, G. (2008) Trypsin and Trypsin-Like Proteases in the Brain: Proteolysis and Cellular Functions. Cellular and Molecular Life Sciences, 65, 237-252.
https://doi.org/10.1007/s00018-007-7288-3
[61]  Bishop, J.R., Schuksz, M. and Esko, J.D. (2007) Heparan Sulphate Proteoglycans Fine-Tune Mammalian Physiology. Nature, 446, 1030-1037.
https://doi.org/10.1038/nature05817
[62]  Snow, A.D., Willmer, J. and Kisilevsky, R. (1987) Sulfated Glycosaminoglycans: A Common Constituent of All Amyloids? Laboratory Investigation, 56, 120-123.
[63]  Van Horssen, J., Wesseling, P., Van Den Heuvel, L.P., De Waal, R.M. and Verbeek, M.M. (2003) Heparan Sulphate Proteoglycans in Alzheimer’s Disease and Amyloid-Related Disorders. The Lancet Neurology, 2, 482-492.
https://doi.org/10.1016/S1474-4422(03)00484-8

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413