全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transgene IL-21-Engineered T Cell-Based Vaccine Potently Converts CTL Exhaustion via the Activation of the mTORC1 Pathway in Chronic Infection

DOI: 10.4236/wjv.2019.91001, PP. 1-21

Keywords: IL-21, Chronic Infection, CTL Exhaustion, Exosome, T Cell Vaccine

Full-Text   Cite this paper   Add to My Lib

Abstract:

CD8+ cytotoxic T lymphocyte (CTL) exhaustion is one of the major obstacles for the effectiveness of virus control in chronic infectious diseases. We previously generated novel ovalbumin (OVA)-specific 41BBL-expressing OVA-TEXO and human immunodeficiency virus (HIV-1) Gag-specific Gag-TEXO vaccines, inducing therapeutic immunity in wild-type C57BL/6 (B6) mice, and converting CTL exhaustion in recombinant OVA-specific adenovirus AdVOVA-infected B6 (AdVOVA-B6) mice with chronic infection. IL-21 cytokine plays an important role in controlling chronic infections. Therefore, in this study, we constructed recombinant transgene IL-21-expressing AdVIL-21, and generated IL-21-expressing OVA-TEXO/IL-21 and Gag-TEXO/IL21 vaccines, or control vaccines (OVA-TEXO/Null and Gag-TEXO/Null) by infecting OVA-TEXO and Gag-TEXO cells with AdVIL-21 or the control AdVNull, lacking transgene, and assessed their effects in B6 or AdVOVA-B6 mice. We demonstrate that both OVA-TEXO/IL-21 and control OVA-TEXO/Null vaccines are capable of converting CTL exhaustion in chronic infection. However, the OVA-TEXO/IL-21 vaccine more efficiently rescues exhausted CTLs by increasing stronger CTL proliferation and effector cytokine IFN-γ expression than the control OVA-TEXO/Null vaccine in AdVOVA-B6 mice with chronic infection, though both vaccines stimulated comparable OVA-specific CTL responses and protective immunity against OVA-expressing BL6-10OVA melanoma lung metastasis in wild-type B6 mice. In vivo, the OVA-TEXO/IL-21-stimulated CTLs more efficiently up-regulate phosphorylation of mTORC1-controlled EIF4E and expression of mTORC1- regulated T-bet molecule than the control OVA-TEXO/Null-stimulated ones. Importantly, the Gag-TEXO/IL21 vaccine induces stronger Gag-specific therapeutic immunity against established Gag-expressing BL6-10Gag melanoma lung metastases than the control Gag-TEXO/Null vaccine in chronic infection. Therefore, this study should have a strong impact on developing new therapeutic vaccines for patients with chronic infections.

References

[1]  Wherry, E.J. and Ahmed, R. (2004) Memory CD8 T-Cell Differentiation during Viral Infection. Journal of Virology, 78, 5535-5545.
https://doi.org/10.1128/JVI.78.11.5535-5545.2004
[2]  Ahmed, K.A., Wang, L., Griebel, P., Mousseau, D.D. and Xiang, J. (2015) Differential Expression of Mannose-6-Phosphate Receptor Regulates T Cell Contraction. Journal of Leukocyte Biology, 98, 313-318.
https://doi.org/10.1189/jlb.2HI0215-049RR
[3]  Wherry, E.J. (2011) T Cell Exhaustion. Nature Immunology, 12, 492-499.
https://doi.org/10.1038/ni.2035
[4]  Buchan, S.L., Manzo, T., Flutter, B., Rogel, A., Edwards, N., Zhang, L., et al. (2015) OX40- and CD27-Mediated Costimulation Synergizes with Anti–PD-L1 Blockade by Forcing Exhausted CD8+ T Cells To Exit Quiescence. Journal of Immunology, 194, 125-133.
https://doi.org/10.4049/jimmunol.1401644
[5]  Fuller, M.J., Khanolkar, A., Tebo, A.E. and Zajac, A.J. (2004) Maintenance, Loss, and Resurgence of T Cell Responses during Acute, Protracted, and Chronic Viral Infections. Journal of Immunology, 172, 4204-4214.
https://doi.org/10.4049/jimmunol.172.7.4204
[6]  Anderson, A.C. (2012) Editorial: Tim-3 Puts on the Brakes. Journal of Leukocyte Biology, 91, 183-185.
https://doi.org/10.1189/jlb.0811423
[7]  Pallikkuth, S., Rogers, K., Villinger, F., Dosterii, M., Vaccari, M., Franchini, G., et al. (2011) Interleukin-21 Administration to Rhesus Macaques Chronically Infected with Simian Immunodeficiency Virus Increases Cytotoxic Effector Molecules in T Cells and NK Cells and Enhances B Cell Function without Increasing Immune Activation or Viral Replication. Vaccine, 29, 9229-9238.
https://doi.org/10.1016/j.vaccine.2011.09.118
[8]  Gallimore, A., Glithero, A., Godkin, A., Tissot, A.C., Pluckthun, A., Elliott, T., et al. (1998) Induction and Exhaustion of Lymphocytic Choriomeningitis Virus-Specific Cytotoxic T Lymphocytes Visualized Using Soluble Tetrameric Major Histocompatibility Complex Class I-Peptide Complexes. Journal of Experimental Medicine, 187, 1383-1393.
https://doi.org/10.1084/jem.187.9.1383
[9]  Zajac, A.J., Blattman, J.N., Murali-Krishna, K., Sourdive, D.J., Suresh, M., Altman, J.D., et al. (1998) Viral Immune Evasion Due to Persistence of Activated T Cells without Effector Function. Journal of Experimental Medicine, 188, 2205-2213.
https://doi.org/10.1084/jem.188.12.2205
[10]  Wherry, E.J., Blattman, J.N., Murali-Krishna, K., Van Der Most, R. and Ahmed, R. (2003) Viral Persistence Alters CD8 T-Cell Immunodominance and Tissue Distribution and Results in Distinct Stages of Functional Impairment. Journal of Virology, 77, 4911-4927.
https://doi.org/10.1128/JVI.77.8.4911-4927.2003
[11]  Brooks, D.G., Teyton, L., Oldstone, M.B. and Mcgavern, D.B. (2005) Intrinsic Functional Dysregulation of CD4 T Cells Occurs Rapidly Following Persistent Viral Infection. Journal of Virology, 79, 10514-10527.
https://doi.org/10.1128/JVI.79.16.10514-10527.2005
[12]  Blattman, J.N., Wherry, E.J., Ha, S.J., Van Der Most, R.G. and Ahmed, R. (2009) Impact of Epitope Escape on PD-1 Expression and CD8 T-Cell Exhaustion during Chronic Infection. Journal of Virology, 83, 4386-4394.
https://doi.org/10.1128/JVI.02524-08
[13]  Virgin, H.W., Wherry, E.J. and Ahmed, R. (2009) Redefining Chronic Viral Infection. Cell, 138, 30-50.
https://doi.org/10.1016/j.cell.2009.06.036
[14]  Althaus, C.L., Ganusov, V.V. and De Boer, R.J. (2007) Dynamics of CD8+ T Cell Responses during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 179, 2944-2951.
https://doi.org/10.4049/jimmunol.179.5.2944
[15]  Matloubian, M., Somasundaram, T., Kolhekar, S.R., Selvakumar, R. and Ahmed, R. (1990) Genetic Basis of Viral Persistence: Single Amino Acid Change in the Viral Glycoprotein Affects Ability of Lymphocytic Choriomeningitis Virus to Persist in Adult Mice. Journal of Experimental Medicine, 172, 1043-1048.
https://doi.org/10.1084/jem.172.4.1043
[16]  Matloubian, M., Kolhekar, S.R., Somasundaram, T. and Ahmed, R. (1993) Molecular Determinants of Macrophage Tropism and Viral Persistence: Importance of Single Amino Acid Changes in the Polymerase and Glycoprotein of Lymphocytic Choriomeningitis Virus. Journal of Virology, 67, 7340-7349.
[17]  Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H., et al. (2006) Restoring Function in Exhausted CD8 T Cells during Chronic Viral Infection. Nature, 439, 682-687.
https://doi.org/10.1038/nature04444
[18]  Wang, R., Xu, A., Zhang, X., Wu, J., Freywald, A., Xu, J., et al. (2017) Novel Exosome-Targeted T-Cell-Based Vaccine Counteracts T-Cell Anergy and Converts CTL Exhaustion in Chronic Infection via CD40L Signaling through the mTORC1 Pathway. Cellular & Molecular Immunology, 14, 529-545.
https://doi.org/10.1038/cmi.2016.23
[19]  Xu, A., Wang, R., Freywald, A., Stewart, K., Tikoo, S., Xu, J., et al. (2017) CD40 Agonist Converting CTL Exhaustion via the Activation of the mTORC1 Pathway Enhances PD-1 Antagonist Action in Rescuing Exhausted CTLs in Chronic Infection. Biochemical and Biophysical Research Communications, 484, 662-667.
https://doi.org/10.1016/j.bbrc.2017.01.172
[20]  Leonard, W.J., Zeng, R. and Spolski, R. (2008) Interleukin 21: A Cytokine/Cytokine Receptor System that Has Come of Age. Journal of Leukocyte Biology, 84, 348-356.
https://doi.org/10.1189/jlb.0308149
[21]  Casey, K.A. and Mescher, M.F. (2007) IL-21 Promotes Differentiation of Naive CD8 T Cells to a Unique Effector Phenotype. The Journal of Immunology, 178, 7640-7648.
https://doi.org/10.4049/jimmunol.178.12.7640
[22]  Elsaesser, H., Sauer, K. and Brooks, D.G. (2009) IL-21 Is Required to Control Chronic Viral Infection. Science, 324, 1569-1572.
https://doi.org/10.1126/science.1174182
[23]  Yi, J.S., Du, M. and Zajac, A.J. (2009) A Vital Role for Interleukin-21 in the Control of a Chronic Viral Infection. Science, 324, 1572-1576.
https://doi.org/10.1126/science.1175194
[24]  Frohlich, A., Kisielow, J., Schmitz, I., Freigang, S., Shamshiev, A.T., Weber, J., et al. (2009) IL-21R on T Cells Is Critical for Sustained Functionality and Control of Chronic Viral Infection. Science, 324, 1576-1580.
https://doi.org/10.1126/science.1172815
[25]  Chevalier, M.F., Julg, B., Pyo, A., Flanders, M., Ranasinghe, S., Soghoian, D.Z., et al. (2011) HIV-1-Specific Interleukin-21(+) CD4(+) T Cell Responses Contribute to Durable Viral Control through the Modulation of HIV-Specific CD8(+) T Cell Function. Journal of Virology, 85, 733-741.
https://doi.org/10.1128/JVI.02030-10
[26]  Parmigiani, A., Pallin, M.F., Schmidtmayerova, H., Lichtenheld, M.G. and Pahwa, S. (2011) Interleukin-21 and Cellular Activation Concurrently Induce Potent Cytotoxic Function and Promote Antiviral Activity in Human CD8 T Cells. Hum Immunol, 72, 115-123.
https://doi.org/10.1016/j.humimm.2010.10.015
[27]  Yue, F.Y., Lo, C., Sakhdari, A., Lee, E.Y., Kovacs, C.M., Benko, E., et al. (2010) HIV-Specific IL-21 Producing CD4+ T Cells Are Induced in Acute and Chronic Progressive HIV Infection and Are Associated with Relative Viral Control. The Journal of Immunology, 185, 498-506.
https://doi.org/10.4049/jimmunol.0903915
[28]  Feng, G., Zhang, J.Y., Zeng, Q.L., Jin, L., Fu, J., Yang, B., et al. (2013) HCV-Specific Interleukin-21+CD4+ T Cells Responses Associated with Viral Control through the Modulation of HCV-Specific CD8+ T Cells Function in Chronic Hepatitis C Patients. Molecules and Cells, 36, 362-367.
https://doi.org/10.1007/s10059-013-0181-z
[29]  Hao, S., Yuan, J. and Xiang, J. (2007) Nonspecific CD4(+) T Cells with Uptake of Antigen-Specific Dendritic Cell-Released Exosomes Stimulate Antigen-Specific CD8(+) CTL Responses and Long-Term T Cell Memory. Journal of Leukocyte Biology, 82, 829-838.
https://doi.org/10.1189/jlb.0407249
[30]  Hao, S., Liu, Y., Yuan, J., Zhang, X., He, T., Wu, X., et al. (2007) Novel Exosome-Targeted CD4+ T Cell Vaccine Counteracting CD4+25+ Regulatory T Cell-Mediated Immune Suppression and Stimulating Efficient Central Memory CD8+ CTL Responses. The Journal of Immunology, 179, 2731-2740.
https://doi.org/10.4049/jimmunol.179.5.2731
[31]  Wang, R.X.Y., Zhao, T., Tan, X., Xu, J. and Xiang, J. (2014) HIV-1 Gag-Specific Exosome-Targeted T Cell-Based Vaccine Stimulates Effector CTL Responses Leading to Therapeutic and Long-Term Immunity against Gag/HLA-A2-Expressing B16 Melanoma in Transgenic HLA-A2 mice. Trials in Vaccinology, 3, 19-25.
https://doi.org/10.1016/j.trivac.2013.12.001
[32]  Wang, R., Freywald, A., Chen, Y., Xu, J., Tan, X. and Xiang, J. (2015) Transgenic 4-1BBL-Engineered Vaccine Stimulates Potent Gag-Specific Therapeutic and Long-Term Immunity via Increased Priming of CD44(+)CD62L(high) IL-7R(+) CTLs with Up- and Downregulation of Anti- and Pro-Apoptosis Genes. Cellular & Molecular Immunology, 12, 456-465.
https://doi.org/10.1038/cmi.2014.72
[33]  Xiang, J., Huang, H. and Liu, Y. (2005) A New Dynamic Model of CD8+ T Effector Cell Responses via CD4+ T Helper-Antigen-Presenting Cells. The Journal of Immunology, 174, 7497-7505.
https://doi.org/10.4049/jimmunol.174.12.7497
[34]  Nanjundappa, R.H., Wang, R., Xie, Y., Umeshappa, C.S., Chibbar, R., Wei, Y., et al. (2011) GP120-Specific Exosome-Targeted T Cell-Based Vaccine Capable of Stimulating DC- and CD4(+) T-Independent CTL Responses. Vaccine, 29, 3538-3547.
https://doi.org/10.1016/j.vaccine.2011.02.095
[35]  Nanjundappa, R.H., Wang, R., Xie, Y., Umeshappa, C.S. and Xiang, J. (2012) Novel CD8+ T Cell-Based Vaccine Stimulates Gp120-Specific CTL Responses Leading to Therapeutic and Long-Term Immunity in Transgenic HLA-A2 Mice. Vaccine, 30, 3519-3525.
https://doi.org/10.1016/j.vaccine.2012.03.075
[36]  Bevan, M.J. (2004) Helping the CD8(+) T-Cell Response. Nature Reviews Immunology, 4, 595-602.
https://doi.org/10.1038/nri1413
[37]  Xie, Y., Zhang, X., Zhao, T., Li, W. and Xiang, J. (2013) Natural CD8(+)25(+) Regulatory T Cell-Secreted Exosomes Capable of Suppressing Cytotoxic T Lymphocyte-Mediated Immunity against B16 Melanoma. Biochemical and Biophysical Research Communications, 438, 152-155.
https://doi.org/10.1016/j.bbrc.2013.07.044
[38]  Parry, R.V., Chemnitz, J.M., Frauwirth, K.A., Lanfranco, A.R., Braunstein, I., Kobayashi, S.V., et al. (2005) CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms. Molecular and Cellular Biology, 25, 9543-9553.
https://doi.org/10.1128/MCB.25.21.9543-9553.2005
[39]  Patsoukis, N., Brown, J., Petkova, V., Liu, F., Li, L. and Boussiotis, V.A. (2012) Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation. Science Signaling, 5, ra46.
https://doi.org/10.1126/scisignal.2002796
[40]  Sheppard, K.A., Fitz, L.J., Lee, J.M., Benander, C., George, J.A., Wooters, J., et al. (2004) PD-1 Inhibits T-Cell Receptor Induced Phosphorylation of the ZAP70/CD3zeta Signalosome and Downstream Signaling to PKCtheta. FEBS Letters, 574, 37-41.
https://doi.org/10.1016/j.febslet.2004.07.083
[41]  Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M. and Saito, T. (2012) Programmed Cell Death 1 Forms Negative Costimulatory Microclusters that Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2. The Journal of Experimental Medicine, 209, 1201-1217.
https://doi.org/10.1084/jem.20112741
[42]  Pauken, K.E. and Wherry, E.J. (2015) Overcoming T Cell Exhaustion in Infection and Cancer. Trends in Immunology, 36, 265-276.
https://doi.org/10.1016/j.it.2015.02.008
[43]  Jin, H.T., Anderson, A.C., Tan, W.G., West, E.E., Ha, S.J., Araki, K., et al. (2010) Cooperation of Tim-3 and PD-1 in CD8 T-Cell Exhaustion during Chronic Viral Infection. Proceedings of the National Academy of Sciences of the United States of America, 107, 14733-14738.
https://doi.org/10.1073/pnas.1009731107
[44]  Wang, C., Wen, T., Routy, J.P., Bernard, N.F., Sekaly, R.P. and Watts, T.H. (2007) 4-1BBL Induces TNF Receptor-Associated Factor 1-Dependent Bim Modulation in Human T Cells and Is a Critical Component in the Costimulation-Dependent Rescue of Functionally Impaired HIV-Specific CD8 T Cells. The Journal of Immunology, 179, 8252-8263.
https://doi.org/10.4049/jimmunol.179.12.8252
[45]  Vezys, V., Penaloza-Macmaster, P., Barber, D.L., Ha, S.J., Konieczny, B., Freeman, G.J., et al. (2011) 4-1BB Signaling Synergizes with Programmed Death Ligand 1 Blockade to Augment CD8 T Cell Responses during Chronic Viral Infection. The Journal of Immunology, 187, 1634-1642.
https://doi.org/10.4049/jimmunol.1100077
[46]  Elgueta, R., Benson, M.J., De Vries, V.C., Wasiuk, A., Guo, Y. and Noelle, R.J. (2009) Molecular Mechanism and Function of CD40/CD40L Engagement in the Immune System. Immunological Reviews, 229, 152-172.
https://doi.org/10.1111/j.1600-065X.2009.00782.x
[47]  Parrish-Novak, J., Dillon, S.R., Nelson, A., Hammond, A., Sprecher, C., Gross, J.A., et al. (2000) Interleukin 21 and Its Receptor Are Involved in NK Cell Expansion and Regulation of Lymphocyte Function. Nature, 408, 57-63.
https://doi.org/10.1038/35040504
[48]  Ozaki, K., Kikly, K., Michalovich, D., Young, P.R. and Leonard, W.J. (2000) Cloning of a Type I Cytokine Receptor Most Related to the IL-2 Receptor β Chain. Proceedings of the National Academy of Sciences of the United States of America, 97, 11439-11444.
https://doi.org/10.1073/pnas.200360997
[49]  Ostiguy, V., Allard, E.L., Marquis, M., Leignadier, J. and Labrecque, N. (2007) IL-21 Promotes T Lymphocyte Survival by Activating the Phosphatidylinositol-3 Kinase Signaling Cascade. Journal of Leukocyte Biology, 82, 645-656.
https://doi.org/10.1189/jlb.0806494
[50]  Sutherland, A.P.R., Joller, N., Michaud, M., Liu, S.M., Kuchroo, V.K. and Grusby, M.J. (2013) IL-21 Promotes CD8+ CTL Activity via the Transcription Factor T-Bet. The Journal of Immunology, 190, 3977-3984.
https://doi.org/10.4049/jimmunol.1201730
[51]  Zeng, R., Spolski, R., Finkelstein, S.E., Oh, S., Kovanen, P.E., Hinrichs, C.S., et al. (2005) Synergy of IL-21 and IL-15 in Regulating CD8+ T Cell Expansion and Function. The Journal of Experimental Medicine, 201, 139-148.
https://doi.org/10.1084/jem.20041057
[52]  Habib, T., Nelson, A. and Kaushansky, K. (2003) IL-21: A Novel IL-2-Family Lymphokine that Modulates B, T, and Natural Killer Cell Responses. The Journal of Allergy and Clinical Immunology, 112, 1033-1045.
https://doi.org/10.1016/j.jaci.2003.08.039
[53]  Schmitz, I., Schneider, C., Frohlich, A., Frebel, H., Christ, D., Leonard, W.J., et al. (2013) IL-21 Restricts Virus-Driven Treg Cell Expansion in Chronic LCMV Infection. PLOS Pathogens, 9, e1003362.
https://doi.org/10.1371/journal.ppat.1003362
[54]  Mendez-Lagares, G., Lu, D., Merriam, D., Baker, C.A., Villinger, F., Van Rompay, K.K.A., et al. (2017) IL-21 Therapy Controls Immune Activation and Maintains Antiviral CD8(+) T Cell Responses in Acute Simian Immunodeficiency Virus Infection. AIDS Research and Human Retroviruses, 33, S81-S92.
https://doi.org/10.1089/aid.2017.0160
[55]  Williams, L.D., Bansal, A., Sabbaj, S., Heath, S.L., Song, W., Tang, J., et al. (2011) Interleukin-21-Producing HIV-1-Specific CD8 T Cells Are Preferentially Seen in Elite Controllers. Journal of Virology, 85, 2316-2324.
https://doi.org/10.1128/JVI.01476-10
[56]  Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M. and Oldstone, M.B. (1994) Virus-Specific CD8+ Cytotoxic T-Lymphocyte Activity Associated with Control of Viremia in Primary Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 68, 6103-6110.
[57]  Ogg, G.S., Jin, X., Bonhoeffer, S., Dunbar, P.R., Nowak, M.A., Monard, S., et al. (1998) Quantitation of HIV-1-Specific Cytotoxic T Lymphocytes and Plasma Load of Viral RNA. Science, 279, 2103-2106.
https://doi.org/10.1126/science.279.5359.2103
[58]  Schmitz, J.E., Kuroda, M.J., Santra, S., Sasseville, V.G., Simon, M.A., Lifton, M.A., et al. (1999) Control of Viremia in Simian Immunodeficiency Virus Infection by CD8+ Lymphocytes. Science, 283, 857-860.
https://doi.org/10.1126/science.283.5403.857
[59]  Jin, X., Bauer, D.E., Tuttleton, S.E., Lewin, S., Gettie, A., Blanchard, J., et al. (1999) Dramatic Rise in Plasma Viremia after CD8(+) T Cell Depletion in Simian Immunodeficiency Virus-Infected Macaques. The Journal of Experimental Medicine, 189, 991-998.
https://doi.org/10.1084/jem.189.6.991
[60]  Kawada, M., Tsukamoto, T., Yamamoto, H., Takeda, A., Igarashi, H., Watkins, D.I., et al. (2007) Long-Term Control of Simian Immunodeficiency Virus Replication with Central Memory CD4+ T-Cell Preservation after Nonsterile Protection by a Cytotoxic T-Lymphocyte-Based Vaccine. Journal of Virology, 81, 5202-5211.
https://doi.org/10.1128/JVI.02881-06
[61]  Mckinnon, L.R., Kaul, R., Kimani, J., Nagelkerke, N.J., Wachihi, C., Fowke, K.R., et al. (2012) HIV-Specific CD8+ T-Cell Proliferation Is Prospectively Associated with Delayed Disease Progression. Immunology and Cell Biology, 90, 346-351.
https://doi.org/10.1038/icb.2011.44
[62]  Shan, L., Deng, K., Shroff, N.S., Durand, C.M., Rabi, S.A., Yang, H.C., et al. (2012) Stimulation of HIV-1-Specific Cytolytic T Lymphocytes Facilitates Elimination of Latent Viral Reservoir after Virus Reactivation. Immunity, 36, 491-501.
https://doi.org/10.1016/j.immuni.2012.01.014
[63]  Redel, L., Le Douce, V., Cherrier, T., Marban, C., Janossy, A., Aunis, D., et al. (2010) HIV-1 Regulation of Latency in the Monocyte-Macrophage Lineage and in CD4+ T Lymphocytes. Journal of Leukocyte Biology, 87, 575-588.
https://doi.org/10.1189/jlb.0409264

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413