全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Temperature-Based Hysteresis Buck Converter for Dynamic Current Sharing

DOI: 10.4236/cs.2018.912019, PP. 213-223

Keywords: Load Current Sharing, Uninterruptible Power Systems, UPS, Voltage Regulator, Temperature-Based Sharing

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, a temperature-based current sharing strategy rather than equal sharing for loads was applied to promote the reliability of uninterruptible power systems (UPS). According to the temperature of each power supply module in a UPS, it would be better to reduce the output current ratio for a hotter supply module in the UPS. In this design, we implemented our regulation circuits by the UMC 0.25-μm CMOS technology with an input range from 3 V to 4.2 V and the regulated output at 1.1 V. The rated output current was 100 mA for each phase. We also employed a current-mode error-correction circuit to improve the current sharing performance based on the averaged current of each phase at the same temperature. According to our simulation results, the current sharing error can be restricted within ± 5% for the supply modules at the same temperature in our system.

References

[1]  Shiau, M.-S. and Hung, C.-C. (2017) Switching Power Supply Apparatus that Incorporate the Same. US Patent No. 9698702B1.
[2]  Nesgaard, C. and Andersen, M.A.E. (2004) Optimized Load Sharing Control by means of Thermal Reliability Management. 35th Annual IEEE Power Electronics Specialists Conference, 6, 4901-4906.
https://doi.org/10.1109/PESC.2004.1354866
[3]  Nesgaard, C. and Andersen, M.A.E. (2004) Efficiency Improvement in Redundant Power Systems by Means of Thermal Load Sharing. Applied Power Electronics Conference and Exposition, 1, 433-439.
[4]  Shuai, Z., Mo, S., Wang, J., Shen, Z.J., Tian, W. and Feng, Y. (2016) Droop Control Method for Load Share and Voltage Regulation in High-Voltage Microgrids. Journal of Modern Power Systems and Clean Energy, 4, 76-86.
https://doi.org/10.1007/s40565-015-0176-1
[5]  Abu-Qahouq, J., Mao, H. and Batarseh, I. (2004) Multiphase Voltage-Mode Hysteretic Controlled DC-DC Converter with Novel Current Sharing. IEEE Transactions on Power Electronics, 19, 1397-1407.
https://doi.org/10.1109/TPEL.2004.836639
[6]  Solis, J.E.M., Navarro, M.G., Mejia, I., Lozano, R.Z.G., Rojas, F.L., Hidalgo, J.O. and del Toro, H.B. (2016) Low Input Resistance CMOS Current Comparator Based on the FVF for Low-Power Applications. Canadian Journal of Electrical and Computer Engineering, 39, 127-131.
[7]  Hsu, W.J. (2015) Single-Inductor Dual-Buck-Output DC-DC Converter Using Constant On-Time Based on Power-Distributive Control. Master Thesis, Institute of Electronic Engineering, Feng Chia University, Taiwan.
[8]  Chen, J.-J., Lin, Y.-T., Lin, H.-Y., Su, J.-H., Chung, W.-Y., Hwang, Y.-S. and Tseng, C.-L. (2005) On-Chip Current Sensing Techniques for Hysteresis Current Controlled DC-DC Converters. Electronics Letters, 41, 95-97.
https://doi.org/10.1049/el:20056807

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413