Let n be a positive
integer. For any integer a, we say that is idempotent modulo n if a2≡a(mod n). The n-modular Erdös-Burgess constant is the smallest positive integer l such that any l integers contain one or more integers, whose product is idempotent modulo n.
We gave a sharp lower bound of the n-modular
Erdös-Burgess constant, in particular, we determined the n-modular Erdös-Burgess constant in the case when nwas a prime power or a product of
pairwise distinct primes.
References
[1]
Gao, W. and Geroldinger, A. (2006) Zero-Sum Problems in Finite Abelian Groups: A Survey. Expositiones Mathematicae, 24, 337-369. https://doi.org/10.1016/j.exmath.2006.07.002
[2]
Geroldinger, A. and Halter-Koch, F. (2006) Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure Appl. Math., Vol. 278, Chapman & Hall/CRC.
[3]
Geroldinger, A. and Ruzsa, I. (2009) Combinatorial Number Theory and Additive Group Theory. In Advanced Courses in Mathematics CRM Barcelona, Springer, Birkhauser. https://doi.org/10.1007/978-3-7643-8962-8
Tao, T. and Van Vu, H. (2006) Additive Combinatorics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511755149
[6]
Cziszter, K., Domokos, M. and Geroldinger, A. (2016) The Interplay of Invariant Theory with Multiplicative Ideal Theory and with Arithmetic Combinatorics, Multiplicative Ideal Theory and Factorization Theory. Springer, Berlin, 43-95.
[7]
Gao, W., Li, Y. and Peng, J. (2014) An Upper Bound for the Davenport Constant of Finite Groups. Journal of Pure and Applied Algebra, 218, 1838-1844. https://doi.org/10.1016/j.jpaa.2014.02.009
[8]
Wang, G. (2015) Davenport Constant for Semigroups II. Journal of Number Theory, 153, 124-134. https://doi.org/10.1016/j.jnt.2015.01.007
[9]
Wang, G. (2017) Additively Irreducible Sequences in Commutative Semigroups. Journal of Combinatorial Theory, Series A, 152, 380-397. https://doi.org/10.1016/j.jcta.2017.07.001
[10]
Wang, G. and Gao, W. (2008) Davenport Constant for Semigroups. Semigroup Forum, 76, 234-238. https://doi.org/10.1007/s00233-007-9019-3
[11]
Wang, G. and Gao, W. (2016) Davenport Constant of the Multiplicative Semigroup of the Ring . arXiv:1603.06030
[12]
Zhang, L., Wang, H. and Qu, Y. (2017) A Problem of Wang on Davenport Constant for the Multiplicative Semigroup of the Quotient Ring of . Colloquium Mathematicum, 148, 123-130. https://doi.org/10.4064/cm6707-6-2016
[13]
Burgess, D.A. (1969) A Problem on Semi-Groups. Studia Sci. Math. Hungar., 4, 9-11.
[14]
Gillam, D.W.H., Hall, T.E. and Williams, N.H. (1972) On Finite Semigroups and Idempotents. Bulletin of the London Mathematical Society, 4, 143-144. https://doi.org/10.1112/blms/4.2.143
[15]
Wang, G. (2019) Structure of the Largest Idempotent-Product Free Sequences in Semigroups. Journal of Number Theory, 195, 84-95. https://doi.org/10.1016/j.jnt.2018.05.020
[16]
Wang, G. (2018) Erdos-Burgess Constant of the Direct Product of Cyclic Semigroups. arXiv:1802.08791.
[17]
Wang, H., Hao, J. and Zhang, L. (2018) On the Erdos-Burgess Constant of the Multiplicative Semigroup of a Factor Ring of . International Journal of Number Theory. (To Appear)
[18]
Grynkiewicz, D.J. (2013) The Large Davenport Constant II: General Upper Bounds. Journal of Pure and Applied Algebra, 217, 2221-2246. https://doi.org/10.1016/j.jpaa.2013.03.002