全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Open Channel Flow Parameters by Using Genetic Algorithm

DOI: 10.4236/ojop.2018.73003, PP. 51-64

Keywords: Parameter Estimation, Genetic Algorithm, Optimal Values, GVF Profiles

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study involves estimation of open channel flow parameters having different bed materials invoking data of Gradual Varied Flow (GVF). Use of GVF data facilitates estimation of flow parameters. The necessary data base was generated by conducting laboratory. In the present study, the efficacy of the Genetic Algorithm (GA) optimization technique is assessed in estimation of open channel flow parameters from the collected experimental data. Computer codes are developed to obtain optimal flow parameters Optimization Technique. Applicability, adequacy and robustness of the developed code are tested using sets of theoretical data generated by experimental work. A simulation model was developed to compute GVF depths at preselected discrete sections for given downstream head and discharge rate. This model is linked to an optimizer to estimate optimal value of decision variables. The proposed model is employed to a set of laboratory data for three bed materials. Application of proposed model reveals that optimal value of fitting parameter ranges from 1.42 to 1.48 as the material gets finer and optimal decision variable ranges from 0.015 to 0.024. The optimal estimates of Manning’s n of three different bed conditions of experimental channel appear to be higher than the corresponding reported/Strickler’s estimates.

References

[1]  Atanov, G.A., Evseeva, E.G. and Meselhe, E.A. (1999) Estimation of Roughness Profile in Trapezoidal Open Channel. Journal of Hydraulic Engineering, 125, 309-312.
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:3(309)
[2]  Ayvaz, M.T. (2013) A Linked Simulation-Optimization Model for Simultaneously Estimating the Manning’s Surface Roughness Values and Their Parameter Structures in Shallow Water Flows. Journal of Hydrology, 500, 183-199.
https://doi.org/10.1016/j.jhydrol.2013.07.019
[3]  Becker, L. and Yeh, W.W.-G. (1972) Identification of Parameters in Unsteady Open Channel Flows. Water Resources Research, 8, 956-965.
https://doi.org/10.1029/WR008i004p00956
[4]  Bennett, A.F. and McIntosh, P.C. (1982) Open Ocean Modeling as an Inverse Problem: Tidal Theory. Journal of Physical Oceanography, 12, 1004-1018.
https://doi.org/10.1175/1520-0485(1982)012<1004:OOMAAI>2.0.CO;2
[5]  Das, A. (2000) Optimal Channel Cross Section with Composite Roughness. Journal of Irrigation and Drainage Engineering, 126, 68-72.
https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(68)
[6]  Das, S.K. and Lardner, R.W. (1991) On the Estimation of Parameters of Hydraulic Models by Assimilation of Periodic Tidal Data. Journal of Geophysical Research: Oceans, 96, 15187-15196.
https://doi.org/10.1029/91JC01318
[7]  Ding, Y., Jia, Y. and Wang, S.S.M. (2004) Identification of Manning’s Roughness Coefficient in Shallow Water Flows. Journal of Hydraulic Engineering, 130, 501-510.
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:6(501)
[8]  Goldberg, D. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesly Publishing Company, Massachusetts.
[9]  Ishii, A. (2000) Parameter Identification of Manning Roughness Coefficient Using Analysis of Hydraulic Jump with Sediment Transport. Kawahara Group Research Report, Chuo University, Japan.
[10]  Khatibi, R.H., Williams, J.J.R. and Wormleaton, P.R. (1997) Identification Problem of Open-Channel Friction Parameters. Journal of Hydraulic Engineering, 123, 1078-1088.
https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1078)
[11]  Koza, J.R. (2010) Human-Competitive Results Produced by Genetic Programming. Genetic Programming and Evolvable Machines, 11, 251-284.
https://doi.org/10.1007/s10710-010-9112-3
[12]  Naidu, B.J., Bhallamudi, S.M. and Narasimhan, S. (1997) GVF Computation in Tree-Type Channel Networks. Journal of Hydraulic Engineering, 123, 700-708.
https://doi.org/10.1061/(ASCE)0733-9429(1997)123:8(700)
[13]  Nguyen and Fenton (2005) Identification of Compound Channel Flow Parameters. Advances in Hydro-Science and Engineering, 5.
[14]  Ramesh, R., Datta, B., Bhallamudi, S.M. and Narayana, S. (2000) Optimal Estimation of Roughness in Open Channel Flows. Journal of Hydraulic Engineering, 126, 299-303.
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:4(299)
[15]  Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., et al. (2012) Effects of Biological Soil Crusts on Surface Roughness and Implications for Runoff and Erosion. Geomorphology, 145-146, 81-89.
https://doi.org/10.1016/j.geomorph.2011.12.042
[16]  Sulzer, S., Rutschmann, P. and Kinzelbach, W. (2002) Flood Discharge Prediction Using Two-Dimensional Inverse Modeling. Journal of Hydraulic Engineering, 1281, 46-54.
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(46)
[17]  Wasantha Lal, A.M. (1995) Calibration of Riverbed Roughness. Journal of Hydraulic Engineering, 121, 664-671.
https://doi.org/10.1061/(ASCE)0733-9429(1995)121:9(664)
[18]  Wormleaton and Karmegam (1984) Parameter Optimization in Flood Routing. Journal of Hydraulic Engineering, 110, 1799-1810.
https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1799)
[19]  Yeh, W.W.-G. (1986) Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resources Research, 22, 95-108.
https://doi.org/10.1029/WR022i002p00095

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413