全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exergetic Efficiencies Evaluation of Flows and Operations on the Mechanical Extraction Process of Jatropha curcas Oil

DOI: 10.4236/ojee.2019.81001, PP. 1-20

Keywords: Jatropha Oil, Extraction Process, Exergetic Efficiency, Pretreatment, Mass Exergy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Jatropha curcas oil is one of the most promising renewable energy sources for rural areas due to its ease of production, which can be used as an alternative to diesel and fuel oil. The development of sustainable energy has been the issue of the discussion about biofuel production given the considerable consumption amount of fossil fuel during the transformation process. And any production process that consumes a lot of energy records a significant destruction of useful energy, which leads to thermodynamic inefficiencies of the process. Besides, the focus on environmental safety is gradually shifting towards energy efficiency in industrial processing. Exergetic analysis is an effective tool for measuring the performance of a production process since exergy is a quantity that measures energy quality. This study assesses the scale of resource degradation in Jatropha oil mechanical extraction processes and finds improving possible pretreatments options for more efficient production. Data from experiments combined with existing databases have permitted to establish the exergy flow balance at each stage of production. The process exergetic yield varies from 29.85% to 35.41% according to the chosen pretreatment process. Mass exergy accounts for 67% of incoming flows and, for outgoing flows, more than 60% is associated with the mass exergy generated by the process waste. The uncertainties analysis on the results was used to validate model results, and to visualize the minimum values for the most unfavorable cases and the maximum values when all the parameters are at their optimum values.

References

[1]  Balat, M. and Balat, H. (2010) Progress in Biodiesel Processing. Applied Energy, 87, 1815-1835.
https://doi.org/10.1016/j.apenergy.2010.01.012
[2]  Lee, H.V., Yunus, R., Juan, J.C. and Taufiq-Yap, Y.H. (2011) Process Optimization Design for Jatropha-Based Biodiesel Production Using Response Surface Methodology. Fuel Processing Technology, 92, 2420-2428.
https://doi.org/10.1016/j.fuproc.2011.08.018
[3]  Leung, D.Y.C., Wu, X. and Leung, M.K.H. (2010) A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy, 87, 1083-1095.
[4]  Sahoo, P.K. and Das, L.M. (2009) Process Optimization for Biodiesel Production from Jatropha, Karanja and Polanga Oils. Fuel, 88, 1588-1594.
https://doi.org/10.1016/j.fuel.2009.02.016
[5]  Santori, G., Di Nicola, G., Moglie, M. and Polonara, F. (2012) A Review Analyzing the Industrial Biodiesel Production Practice Starting from Vegetable Oil Refining. Applied Energy, 92, 109-132.
https://doi.org/10.1016/j.apenergy.2011.10.031
[6]  Shahid, E.M. and Jamal, Y. (2011) Production of Biodiesel: A Technical Review. Renewable and Sustainable Energy Reviews, 15, 4732-4745.
https://doi.org/10.1016/j.rser.2011.07.079
[7]  Yusuf, N.N.A.N., Kamarudin, S.K. and Yaakub, Z. (2011) Overview on the Current Trends in Biodiesel Production. Energy Conversion and Management, 52, 2741-2751.
https://doi.org/10.1016/j.enconman.2010.12.004
[8]  Demirbas, M.F. (2011) Biofuels from Algae for Sustainable Development. Applied Energy, 88, 3473-3480.
https://doi.org/10.1016/j.apenergy.2011.01.059
[9]  Li, Z.X., Yang, D.P., Huang, M.L., Hu, X.J., Shen, J.G., Zhao, Z.M., et al. (2012) Chrysomya megacephala (Fabricius) Larvae: A New Biodiesel Resource. Applied Energy, 94, 349-354.
https://doi.org/10.1016/j.apenergy.2012.01.068
[10]  Maceiras, R., Rodrí guez, M., Cancela, A., Urréjola, S. and Sánchez, A. (2011) Macroalgae: Raw Material for Biodiesel Production. Applied Energy, 88, 3318-3323.
https://doi.org/10.1016/j.apenergy.2010.11.027
[11]  Marchetti, J.M. (2012) A Summary of the Available Technologies for Biodiesel Production Based on a Comparison of Different Feedstock’s Properties. Process Safety and Environmental Protection, 90, 157-163.
[12]  Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H. and Parajó, J.C. (2010) Fractional Characterisation of Jatropha, Neem, Moringa, Trisperma, Castor and Candlenut Seeds as Potential Feedstocks for Biodiesel Production in Cuba. Biomass and Bioenergy, 34, 533-538.
https://doi.org/10.1016/j.biombioe.2009.12.019
[13]  Ong, H.C., Mahlia, T.M.I., Masjuki, H.H. and Norhasyima, R.S. (2011) Comparison of Palm Oil, Jatropha curcas and Calophyllum inophyllum for Biodiesel: A Review. Renewable and Sustainable Energy Reviews, 15, 3501-3515.
https://doi.org/10.1016/j.rser.2011.05.005
[14]  Qiu, F., Li, Y., Yang, D., Li, X. and Sun, P. (2011) Biodiesel Production from Mixed Soybean Oil and Rapeseed Oil. Applied Energy, 88, 2050-2055.
https://doi.org/10.1016/j.apenergy.2010.12.070
[15]  Behera, S.K., Srivastava, P., Tripathi, R., Singh, J.P. and Singh, N. (2010) Evaluation of Plant Performance of Jatropha curcas L. under Different Agro-Practices for Optimizing Biomass—A Case Study. Biomass and Bioenergy, 34, 30-41.
https://doi.org/10.1016/j.biombioe.2009.09.008
[16]  Deng, X., Fang, Z., Hu, L.Y. and Yu, C.L. (2011) Production of Biodiesel from Jatropha Oil Catalyzed by Nanosized Solid Basic Catalyst. Energy, 36, 777-784.
https://doi.org/10.1016/j.energy.2010.12.043
[17]  Juan, J.C., Kartika, D.A., Wu, T.Y. and Hin, T.Y.Y. (2011) Biodiesel Production from Jatropha Oil by Catalytic and Non-Catalytic Approaches: An Overview.
[18]  Ofori-Boateng, C., Keat Teong, L. and Jitkang, L. (2012) Comparative Exergy Analyses of Jatropha curcas Oil Extraction Methods: Solvent and Mechanical Extraction Processes. Energy Conversion and Management, 55, 164-171.
https://doi.org/10.1016/j.enconman.2011.11.005
[19]  Pandey, K.K., Pragya, N. and Sahoo, P.K. (2011) Life Cycle Assessment of Small-Scale High-Input Jatropha Biodiesel Production in India. Applied Energy, 88, 4831-4839.
https://doi.org/10.1016/j.apenergy.2011.06.026
[20]  Yee, K.F., Wu, J.C.S. and Lee, K.T. (2011) A Green Catalyst for Biodiesel Production from Jatropha Oil: Optimization Study. Biomass and Bioenergy, 35, 1329-1338.
https://doi.org/10.1016/j.biombioe.2011.01.017
[21]  Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M. and Hackel, S. (1996) Jatropha curcas L. as a Source for the Production of Biofuel in Nicaragua. Bioresource Technology, 58, 77-82.
https://doi.org/10.1016/S0960-8524(96)00111-3
[22]  Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M. and Liang, B. (2009) Production of Biodiesel from Jatropha curcas L. Oil. Computers and Chemical Engineering, 33, 1091-1096.
https://doi.org/10.1016/j.compchemeng.2008.09.012
[23]  Parawira, W. (2010) Biodiesel Production from Jatropha curcas: A Review. Scientific Research and Essays, 5, 1796-1808.
[24]  Tamalampudi, S., Talukder, M.R., Hama, S., Numata, T., Kondo, A. and Fukuda, H. (2008) Enzymatic Production of Biodiesel from Jatropha Oil: A Comparative Study of Immobilized-Whole Cell and Commercial Lipases as a Biocatalyst. Biochemical Engineering Journal, 39, 185-189.
https://doi.org/10.1016/j.bej.2007.09.002
[25]  Kumar, A. and Sharma, S. (2008) An Evaluation of Multipurpose Oil Seed Crop for Industrial Uses (Jatropha curcas L.): A Review. Industrial Crops and Products, 28, 1-10.
[26]  Makkar, H.P.S. and Becker, K. (2009) Jatropha curcas, a Promising Crop for the Generation of Biodiesel and Value-Added Coproducts. European Journal of Lipid Science and Technology, 111, 773-787.
https://doi.org/10.1002/ejlt.200800244
[27]  Tewari, J.P., Dwivedi, H.D., Pathak, M. and Srivastava, S.K. (2007) Incidence of a Mosaic Disease in Jatropha curcas L. from Eastern Uttar Pradesh. Current Science, 93, 1048-1049.
[28]  Valdes-Rodriguez, O.A., Sánchez-Sánchez, O., Pérez-Vázquez, A. and Ruiz-Bello, R. (2011) Soil Texture Effects on the Development of Jatropha Seedlings—Mexican Variety “pinón manso”. Biomass and Bioenergy, 35, 3529-3536.
[29]  Achten, W.M.J., Verchot, L., Franken, Y.J., Mathijs, E., Singh, V.P., Aerts, R., et al. (2008) Jatropha Bio-Diesel Production and Use.
[30]  de Oliveira, J.S., Leite, P.M., de Souza, L.B., Mello, V.M., Silva, E.C., Rubim, J.C., et al. (2009) Characteristics and Composition of Jatropha gossypiifolia and Jatropha curcas L. Oils and Application for Biodiesel Production. Biomass and Bioenergy, 33, 449-53.
https://doi.org/10.1016/j.biombioe.2008.08.006
[31]  Vaknin, Y., Gha-nim, M., Samra, S., Dvash, L., Hendelsman, E., Eisikowitch, D., et al. (2011) Predicting Jatropha curcas Seed-Oil Content, Oil Composition and Protein Content Using Near-Infrared Spectroscopy-A Quick and Non-Destructive Method. Industrial Crops and Products, 34, 1029-1034.
https://doi.org/10.1016/j.indcrop.2011.03.011
[32]  Pinzi, S., Garcia, I.L., Lopez-Gimenez, F.J., DeCastro, M.D.L., Dorado, G. and Dorado, M.P. (2009) The Ideal Vegetable Oil-Based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy and Fuels, 23, 2325-2341.
https://doi.org/10.1021/ef801098a
[33]  Pramanik, K. (2003) Properties and Use of Jatropha curcas Oil and Oiesel Fuel Blends in Compression Ignition Engine. Renewable Energy, 28, 239-248.
https://doi.org/10.1016/S0960-1481(02)00027-7
[34]  Francis, G., Edinger, R. and Becker, K. (2005) A Concept for Simultaneous Wasteland Reclamation, Fuel Production, and Socio-Economic Development in Degraded Areas in India: Need, Po-tential and Perspectives of Jatropha Plantations. Natural Resources Forum, 29, 12-24.
https://doi.org/10.1111/j.1477-8947.2005.00109.x
[35]  Olajide, J.O., Igbeka, J.C., Afolabi, T.J. and Emiola, O.A. (2007) Prediction of Oil Yield from Groundnut Kernels in an Hydraulic Press Using Artificial Neural Network (ANN). Journal of Food Engineering, 81, 643-646.
https://doi.org/10.1016/j.jfoodeng.2006.06.007
[36]  Gutiérrez, L.F., Ratti, C. and Belkacemi, K. (2008) Effects of Drying Method on the Extraction Yields and Quality of Oils from Quebec Sea Buckthorn (Hippophae rhamnoides L.) Seeds and Pulp. Food Chemistry, 106, 896-904.
https://doi.org/10.1016/j.foodchem.2007.06.058
[37]  Willems, P., Kuipers, N.J.M. and De Haan, A.B. (2008) Hydraulic Pressing of Oilseeds: Experimental Determination and Modeling of Yield and Pressing Rates. Journal of Food Engineering, 89, 8-16.
https://doi.org/10.1016/j.jfoodeng.2008.03.023
[38]  Keenan, J.H. (1951) Availability and Irreversibility in Thermodynamics. British Journal of Applied Physics, 2, 183-192.
https://doi.org/10.1088/0508-3443/2/7/302
[39]  Ayres, R.U., Turton, H. and Casten, T. (2007) Energy Efficiency, Sustainability and Economic Growth. Energy, 32, 634-648.
https://doi.org/10.1016/j.energy.2006.06.005
[40]  Poredos, A. and Kitanovski, A. (2002) Exergy Loss as a Basis for the Price of Thermal Energy. Energy Conversion and Management, 43, 2163-2173.
https://doi.org/10.1016/S0196-8904(01)00156-X
[41]  Rosen, M.A. and Dincer, I. (2003) Exer-gy-Cost-Energy-Mass Analysis of Thermal Systems and Processes. Energy Conversion and Management, 44, 1633-1651.
https://doi.org/10.1016/S0196-8904(02)00179-6
[42]  Evon, P., Vandenbossche, V., Pontalier, P.Y. and Rigal, L. (2009) Aqueous Extraction of Residual Oil from Sunflower Press Cake Using a Twin-Screw Extruder: Feasibility Study. Industrial Crops and Products, 29, 455-465.
https://doi.org/10.1016/j.indcrop.2008.09.001
[43]  Okoye, C.N., Jiang, J. and Hui, L.Y. (2008) Design and Development of Secondary Controlled Industrial Palm Kernel Nut Vegetable Oil Expeller Plant for Energy Saving and Recuperation. Journal of Food Engineering, 87, 578-590.
https://doi.org/10.1016/j.jfoodeng.2007.01.030
[44]  Appelqvist, L.-A. and Ohlson, R. (1972) Rapeseed Cultivation, Composition, Processing and Utilization. Elsevier, Amsterdam.
[45]  Cornelisse, R. (1997) Thermodynamics and Sustainable Development: The Use of Exergy Analysis and the Reduction of Irreversibility. Ph.D. Thesis, University of Twente.
[46]  Dewar, R.C. (2005) Maximum Entropy Production and the Fluctuation Theorem. Journal of Physics A: Mathematical and General, 38, 371-381.
https://doi.org/10.1088/0305-4470/38/21/L01
[47]  Kotas, T.J. (1985) Examples of Thermal and Chemical Plant Analysis. Butterworths, London.
[48]  Sussman, M.V. (1980) Standard Chemical Availability. Chemical Engineering Progress, 76, 37-39.
[49]  Georgescu-Roegen, N. (1971) The Entropy Law and the Economic Process (German). Harvard University Press, Cambridge.
https://doi.org/10.4159/harvard.9780674281653
[50]  Gibbs, J.W. (1878) On the Equilibrium of Heterogeneous Substances. American Journal of Science, 2, 382-404.
https://doi.org/10.2475/ajs.s3-16.96.441
[51]  Berthiaume, R., Bouchard, C. and Rosen, M.A. (2001) Exergetic Evaluation of the Renewability of a Biofuel. Exergy: An International Journal, 1, 256-268.
https://doi.org/10.1016/S1164-0235(01)00029-2
[52]  De Meester, B., Dewulf, J., Janssens, A. and Van Langenhove, H. (2006) An Improved Calculation of the Exergy of Natural Resources for Exergetic Life Cycle Assessment (ELCA). Environmental Science and Technology, 40, 6844-6851.
https://doi.org/10.1021/es060167d
[53]  Dos Santos, M.T. and Park, S.W. (2009) Exergy and Sustainable Development for Chemical Industry Revisited. Computer Aided Chemical Engineering, 27, 1923-1928.
https://doi.org/10.1016/S1570-7946(09)70711-4
[54]  Iso (1995) Guide to the Expression of Uncertainty in Measurement.
[55]  Schenck, H. (1979) Theories of Engineering Experimentation. McGraw-Hill, New York.
[56]  Hermann, W.A. (2006) Quantifying Global Exergy Resources. Energy, 31, 1685-1702.
https://doi.org/10.1016/j.energy.2005.09.006
[57]  Subroto, E., Manurung, R., Heeres, H.J. and Broekhuis, A.A. (2015) Mechanical Extraction of Oil from Jatropha curcas L. Kernel: Effect of Processing Parameters. Industrial Crops and Products, 63, 303-310.
https://doi.org/10.1016/j.indcrop.2014.06.018
[58]  Mpagalile, J.J. and Clarke, B. (2005) Effect of Processing Parameters on Coconut Oil Expression Efficiencies. International Journal of Food Sciences and Nutrition, 56, 125-132.
https://doi.org/10.1080/09637480500082058
[59]  Erickson, D.R., Pryde, E.H. and Brekke (1980) Handbook of Soy Oil Processing & Utilization. American Oil Chemists Society.
[60]  Karaj, S. and Müller, J. (2011) Optimizing Mechanical Oil Extraction of Jatropha curcas L. Seeds with Respect to Press Capacity, Oil Recovery and Energy Efficiency. Industrial Crops and Products, 34, 1010-1016.
https://doi.org/10.1016/j.indcrop.2011.03.009
[61]  Edem, D.O. (2002) Palm Oil: Biochemical, Physiological, Nutritional, Hematological, and Toxicological Aspects: A Review. Kluwer Academic Publishers, Dordrecht.
[62]  Morris, D.R., Steward, F.R. and Szargut, J. (1994) Technological Assessment of Chemical Metallurgical Processes. Canadian Metallurgical Quarterly, 33, 289-295.
https://doi.org/10.1179/cmq.1994.33.4.289
[63]  Rivero, R. and Garfias, M. (2006) Standard Chemical Exergy of Elements Updated. Energy, 31, 3310-3326.
https://doi.org/10.1016/j.energy.2006.03.020

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413