全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geomaterials  2019 

Heterogeneous Photocatalytic Degradation of Dyes in Water/Alcohol Solution Used by the Brazilian Agate Industry

DOI: 10.4236/gm.2019.91003, PP. 29-39

Keywords: Agate, Dye, Rhodamine B, Heterogeneous Photocatalysis, Advanced Oxidation Process

Full-Text   Cite this paper   Add to My Lib

Abstract:

The agate dyeing industry has been commonly seen as a high-pollution industry. Dyeing wastewater treatment is considered one of the most important categories for water-pollution control, because of its intense colour and the high concentration of organic contaminants. Most dyes used in the process present minimal biodegradability due to aromatic organic compounds in their structure. Using a photocatalytic reactor, experiments were carried out to study the decolorization of a water solution containing 8% ethylic alcohol and 200 mg L1 of the dye Rhodamine B (RhB), the most difficult colorant to degrade among the used by the agate industry. The best conditions were further applied to treat the same agate water/ethyl alcohol solution containing a mixture of 200 mg L−1 of Rhodamine B (RhB), Crystal Violet (CV), Brilliant Green (BG), and Blood Red (BR). All the experiments were performed in a 2 L reactor equipped with ultraviolet (UV) lamps, at a wavelength of 365 nm, with powdered TiO2 or ZnO as the catalyst. The results indicated that the optimal decolorization conditions were attained with 2.5 g L1 of the catalyst at pH 10 and an irradiation time of 80 min. The process resulted in complete degradation of CV, BG and 80% - 90% degradation of RhB and BR. The catalyst ZnO presented a performance somewhat better than TiO2. It is possible to conclude that the process of heterogeneous photocatalysis is effective for decolorization of water streams from the agate industry.

References

[1]  Hartmann, L.A. and Silva, J.T.D. (2010) Tecnologias para o setor de gemas, joias e mineração. 1. Centro Tecnologia de Pedras, Gemas e Joias do rio Grande do Sul.
[2]  Knecht, T. (1957) Coloração artificial de ágatas. Revista da Associação Brasileira de Gemologia, 7, 1-9.
[3]  Bosi, L. (1999) Industrial Treatment of Raw Agate: Cutting, Chemical Thermal Treatment, Polishing for Obtation of Coloured Agate Plate. ENPROMER’99. In: II Congresso de Engenharia de Processos do MERCOSUL, Florianópolis, Santa Catarina, Brasil of Conference.
[4]  Silva, R.D.A., Petter, C.O. and Schneider, I.A.H. (2007) Avaliação da perda da coloração artificial de ágatas. Rem: Revista da Escola de Minas, 60, 477-482.
http://www.lume.ufrgs.br/handle/10183/21034
[5]  Yazdi, M., Lotfi, R., Masoudi, F. And Pak, N.M. (2016) Chemical Treatment Effects of Blue, Yellow and Green Colors with Heating Methods on Agates of Cheshme Shoor Area, Qom, Iran. Journal of Minerals and Materials Characterization and Engineering, 4, 210-217.
https://doi.org/10.4236/jmmce.2016.43019
[6]  IBGM. (2018) Brazilian Institute of Gems and Precious Minerals—The Sector in Numbers.
http://ibgm.com.br/ibgm-informa/publicacoes/
[7]  DNPM, Anuário Mineral Estadual Rio Grande do Sul, Brasil, in Departamento Nacional De Produção Mineral—Superintendência Do Rio Grande Do Sul. 2018, Ministério De Minas E Energia—MME, Superintendência Do Rio Grande Do Sul: Brasília, DF, p. 57.
[8]  Vilasbôas, F.D.S., Santos, C.R.D. and Schneider, I.A.H. (2017) Environmental Issues on the Industrial Processing of Raw Agate. Geomaterials, 7, 13-24.
https://doi.org/10.4236/gm.2017.71002
[9]  CONSEMA/RS (2017) Resolution 355/2017: Provides Criteria and Standards for the Emission of Liquid Effluents to the Generating Sources that Discharge Their Effluents into Surface Waters in the State of Rio Grande do Sul, 7.
http://www.sema.rs.gov.br/upload/arquivos/201707/19110149-355-2017-criterios-e-padroes-de-emissao-de-efluentes-liquidos.pdf
[10]  Pizzolato, T.M., Carissimi, E., Machado, E.L. and Schneider, I.A.H. (2002) Colour Removal with NaClO of Dye Wastewater from an Agate-Processing Plant in Rio Grande do Sul, Brazil. International Journal of Mineral Processing, 65, 203-211.
https://doi.org/10.1016/S0301-7516(01)00082-5
[11]  Machado, ê.L., De Sales Dambros, V., Kist, L.T., Alcayaga Lobo, E.A., Tedesco, S.B. and Moro, C.C. (2012) Use of Ozonization for the Treatment of Dye Wastewaters Containing Rhodamine B in the Agate Industry. Water, Air, & Soil Pollution, 223, 1753-1764.
https://doi.org/10.1007/s11270-011-0980-9
[12]  Barros, A.L., Pizzolato, T.M., Carissimi, E. and Schneider, I.H. (2006) Decolorizing Dye Wastewater from the Agate Industry with Fenton Oxidation Process. Minerals Engineering, 19, 87-90.
https://doi.org/10.1016/j.mineng.2005.04.004
[13]  Herrmann, J.-M. (1999) Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catalysis Today, 53, 115-129.
https://doi.org/10.1016/S0920-5861(99)00107-8
[14]  Muhd Julkapli, N., Bagheri, S. and Bee Abd Hamid, S. (2014) Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes. The Scientific World Journal, 2014, 25.
https://doi.org/10.1155/2014/692307
[15]  Ahmed, L.M., Tawfeeq, F.T., Al-Ameer, M.H.A., Al-Hussein, K.A. and Athaab, A.R. (2016) Photo-Degradation of Reactive Yellow 14 Dye (A Textile Dye) Employing ZnO as Photocatalyst. Journal of Geoscience and Environment Protection, 4, 11.
https://doi.org/10.4236/gep.2016.411004
[16]  Campos, M.L.M., Mello, L.C., Zanette, D.R., Sierra, M.M.D.S. and Bendo, A. (2001) Construção e otimização de um reator de baixo custo para a fotodegradação da matéria organica em águas naturais e sua aplicação no estudo da especiação do cobre por voltametria. Química Nova, 24, 257-261.
https://doi.org/10.1590/S0100-40422001000200018
[17]  Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010) Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research, 44, 2997-3027.
https://doi.org/10.1016/j.watres.2010.02.039
[18]  Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J. and Gernjak, W. (2009) Decontamination and Disinfection of Water by Solar Photocatalysis: Recent overview and Trends. Catalysis Today, 147, 1-59.
https://doi.org/10.1016/j.cattod.2009.06.018
[19]  Devi, G.L., Narasimha Murthy, B. and Girish Kumar, S. (2009) Heterogeneous Photo Catalytic Degradation of Anionic and Cationic Dyes over TiO2 and TiO2 Doped with Mo6+ Ions under Solar Light: Correlation of Dye Structure and Its Adsorptive Tendency on the Degradation Rate. Chemosphere, 76, 1163-1166.
https://doi.org/10.1016/j.chemosphere.2009.04.005
[20]  Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V.B., Kajitvichyanukul, P. and Krishnan-Ayer, R. (2008) Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 171-192.
https://doi.org/10.1016/j.jphotochemrev.2008.09.001
[21]  Lee, K.M., Lai, C.W., Ngai, K.S. and Juan, J.C. (2016) Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Research, 88, 428-448.
https://doi.org/10.1016/j.watres.2015.09.045
[22]  Zangeneh, H., Zinatizadeh, A.L., Habibi, M., Akia, M. and Hasnain Isa, M. (2015) Photocatalytic Oxidation of Organic Dyes and Pollutants in Wastewater Using Different Modified Titanium Dioxides: A Comparative Review. Journal of Industrial and Engineering Chemistry, 26, 1-36.
https://doi.org/10.1016/j.jiec.2014.10.043
[23]  Wang, Y., Mo, Z., Zhang, P., Zhang, C., Han, L., Guo, R., Gou, H., Wei, X. and Hu, R. (2016) Synthesis of Flower-Like TiO2 Microsphere/Graphene Composite for Removal of Organic Dye from Water. Materials & Design, 99, 378-388.
https://doi.org/10.1016/j.matdes.2016.03.066
[24]  Syed Nabeel, A. and Waseem, H. (2018) Heterogeneous Photocatalysis and Its Potential Applications in Water and Wastewater Treatment: A Review. Nanotechnology, 29, Article ID: 342001.
https://doi.org/10.1088/1361-6528/aac6ea
[25]  Sivalingam, G., Priya, M.H. and Madras, G. (2004) Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2. Applied Catalysis B: Environmental, 51, 67-76.
https://doi.org/10.1016/j.apcatb.2004.02.006
[26]  Siuleiman, S., Kaneva, N., Bojinova, A., Papazova, K., Apostolov, A. and Dimitrov, D. (2014) Photodegradation of Orange II by ZnO and TiO2 Powders and Nanowire ZnO and ZnO/TiO2 Thin Films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 408-413.
https://doi.org/10.1016/j.colsurfa.2014.01.010
[27]  Schrauben, J.N., Hayoun, R., Valdez, C.N., Braten, M., Fridley, L. and Mayer, J.M. (2012) Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents. Science, 336, 1298.
https://doi.org/10.1126/science.1220234

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413