全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fluorescent Superparamagnetic Core-Shell Nanostructures: Facile Synthesis of Fe@C-CNx Particles for Reusable Photocatalysts

DOI: 10.4236/anp.2019.81001, PP. 1-19

Keywords: Magnetic Nanoparticles, Core-Shell Nanostructures, Fe@C-CNx, Fluorescence, Photocatalysts

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synthesis and characterization of hybrid fluorescent superparamagnetic core-shell particles of Fe@C-CNx composition are presented for the first time. The prepared Fe@C-CNx hybrid nanoparticles were found to possess multifunctionality by exhibiting strong superparamagnetic properties and bright fluorescence emissions at 500 nm after the excitation with light in the UV-visible range. Fe@C-CNx also exhibits photocatalytic activities for organic dye degradation comparable to pure amorphous CNx with reusability through magnetic separation. The combination of magnetic and fluorescent properties of core-shell Fe@C-CNx nanoparticles opens opportunities for their application as sensors and magnet manipulated reusable photocatalysts. Superparamagnetic Fe@C core-shell nanoparticles were used as the template material in the synthesis, where the carbon shell was functionalized through one-step free-radical addition of alkyl groups terminated with carboxylic acid moieties. The method utilizes the organic acyl peroxide of dicarboxylic acid (succinic acid peroxide) as a non-oxidant functional free radical precursor for functionalization. Further, covalently functionalized succinyl-Fe@C core-shell nanoparticles were coated with the amorphous carbon nitride (CNx) generated by an in-situ solution-based chemical reaction of cyanuric chloride with lithium nitride. A detailed physicochemical characterization of the microstructure, magnetic and fluorescence properties of the synthesized hybrid nanoparticles is provided.

References

[1]  Jordan, A., Scholz, R., Wust, P., Fakhling, H. and Felix. R. (1999) Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 201, 413-419.
https://doi.org/10.1016/S0304-8853(99)00088-8
[2]  Duerr, S., Janko, C., Lyer, S., Tripal, P., Schwarz, M., Zaloga, J., Tietze, R. and Alexiou, C. (2013) Magnetic Nanoparticles for Cancer Therapy. Nanotechnology Reviews, 2, 395-409.
https://doi.org/10.1515/ntrev-2013-0011
[3]  Revia, R.A. and Zhang, M. (2016) Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances. Materials Today, 19, 157-168.
https://doi.org/10.1016/j.mattod.2015.08.022
[4]  Rana, S., Jadhav, N.V., Barick, K.C., Pandeyb, B.N. and Hassan, P.A. (2014) Polyaniline Shell Cross-Linked Fe3O4 Magnetic Nanoparticles for Heat Activated Killing of Cancer Cells. Dalton Transactions, 43, 12263-12271.
[5]  Devkota, J., Mai, T.T.T., Stojaka, K., Ha, P.T., Pham, H.N., Nguyen, X.P., Mukherjee, P., Srikanth, H. and Phan, M.H. (2014) Synthesis, Inductive Heating, and Magnetoimpedance-Based Detection of Multifunctional Fe3O4 Nanoconjugates. Sensors and Actuators B, 190, 715-722.
https://doi.org/10.1016/j.snb.2013.09.033
[6]  Bunge, A., Magerusan, L., Morjan, I., Turcu, R., Borodi, G. and Liebscher, J. (2015) Diazonium Salt-Mediated Synthesis of New Amino, Hydroxy, Propargyl, and Maleinimido-Containing Superparamagnetic Fe@C Nanoparticles as Platforms for Linking Bio-Entities or Organocatalytic Moieties. Journal of Nanoparticle Research, 17, 379-395.
https://doi.org/10.1007/s11051-015-3167-2
[7]  Taylor, A., Krupskaya, Y., Costa, S., Oswald, S., Kramer, K., Fussel, S., Klingeler, R., Buchner, B., Borowiak-Palen, E. and Wirth, M.P. (2010) Functionalization of Carbon Encapsulated Iron Nanoparticles. Journal of Nanoparticle Research, 12, 513-519.
https://doi.org/10.1007/s11051-009-9773-0
[8]  Aguiló-Aguayo, N., Maurizi, L., Galmarini, S., Ollivier-Beuzelin, M.G., Coullerez, G., Bertran, E. and Hofmann, H. (2014) Aqueous Stabilisation of Carbon-Encapsulated Superparamagnetic α-Iron Nanoparticles for Biomedical Applications. Dalton Transactions, 43, 13764-13775.
https://doi.org/10.1039/C4DT00085D
[9]  Davydov, V., Rakhmanina, A., Kireev, I., Alieva, I., Zhironkina, O., Strelkova, O., Dianova, V., Samani, T.D., Mireles, K., Yahia, L.H., Uzbekov, R., Agafonov, V. and Khabashesku, V. (2014) Solid State Synthesis of Carbon-Encapsulated Iron Carbide Nanoparticles and Their Interaction with Living Cells. Journal of Materials Chemistry B, 2, 4250-4261.
https://doi.org/10.1039/C3TB21599G
[10]  Chaudhary, R.P., Kangasniemi, K., Takahashi, M., Mohanty, S.K., Koymen, A.R. and Bossmann , S.H. (2017) Fe Core-Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer. Journal of Functional Biomaterials, 8, 46-53.
https://doi.org/10.3390/jfb8040046
[11]  Peng, H., Alemany, L.B., Margrave, J.L. and Khabashesku, V.N. (2003) Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 125, 15174-15182.
https://doi.org/10.1021/ja037746s
[12]  Bigall, N.C., Parak, W.J. and Dorfs, D. (2012) Fluorescent, Magnetic and Plasmonic—Hybrid Multifunctional Colloidal Nano Objects. Nano Today, 7, 282-296.
https://doi.org/10.1016/j.nantod.2012.06.007
[13]  Zhao, Z., Li, W., Dai, Y., Ge, G., Guo, X. and Wang, G. (2015) Carbon Nitride Encapsulated Nanodiamond Hybrid with Improved Catalytic Performance for Clean and Energy-Saving Styrene Production via Direct Dehydrogenation of Ethylbenzene. ACS Sustainable Chemistry & Engineering, 3, 3355-3364.
https://doi.org/10.1021/acssuschemeng.5b01032
[14]  Ong, W.-J., Tan, L.-L., Ng, Y.H., Yong, S.-T. and Chai, S.-P. (2016) Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chemical Reviews, 116, 7159-7329.
[15]  Zimmerman, J.L., Williams, R., Khabashesku, V.N. and Margrave, J.L. (2001) Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters, 1, 731-734.
https://doi.org/10.1021/nl015626h
[16]  Zimmerman, J.L., Williams, R., Khabashesku, V.N. and Margrave, J.L. (2001) Preparation of Sphere-Shaped Nanoscale Carbon Nitride Polymer. Russian Chemical Bulletin, 50, 2020-2027.
https://doi.org/10.1023/A:1015020511471
[17]  Zinin, P.V., Ryabova, A.V., Davydov, V.A., Khabashesku, V., Boritko, S., Sharma, S.K., Pominova, D.V. and Loshenov, V. (2015) Anomalous Fluorescence of the Spherical Carbon Nitride Nanostructures. Chemical Physics Letters, 633, 95-98.
https://doi.org/10.1016/j.cplett.2015.05.020
[18]  Khabashesku, V.N., Zimmerman, J.L. and Margrave, J.L. (2000) Powder Synthesis and Characterization of Amorphous Carbon Nitride. Chemistry of Materials, 12, 3264-3270.
https://doi.org/10.1021/cm000328r
[19]  Yuan, Y., Zhang, L., Xing, J., Utama, M.I.B., Lu, X., Du, K., Li, Y., Hu, X., Wang, S., Genc, A., Dunin-Borkowski, R., Arbiol, J. and Xiong, Q. (2015) High-Yield Synthesis and Optical Properties of g-C3N4. Nanoscale, 7, 12343-12350.
https://doi.org/10.1039/C5NR02905H
[20]  Bystrzejewski, M., Pyrzynska, K., Huczko, A. and Lange, H. (2009) Carbon-Encapsulated Magnetic Nanoparticles as Separable and Mobile Sorbents of Heavy Metal Ions from Aqueous Solutions. Carbon, 47, 1201-1204.
https://doi.org/10.1016/j.carbon.2009.01.007
[21]  Zhang, L., Jin, Z., Lu, H., Lin, T., Ruan, S., Zhao, X.S. and Zeng, Y.-J. (2018) Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping. ACS Omega, 3, 15009-15017.
https://doi.org/10.1021/acsomega.8b01933
[22]  Wang, H., Zhou, W., Li, P., Tan, X., Liu, Y., Hu, W., Ye, J. and Yu, T. (2018) Enhanced Visible-Light-Driven Hydrogen Production of Carbon Nitride by Band Structure Tuning. The Journal of Physical Chemistry C, 122, 17261-17267.
https://doi.org/10.1021/acs.jpcc.8b04224
[23]  Rochkind, M., Pasternak, S. and Paz, Y. (2015) Using Dyes for Evaluating Photocatalytic Properties: A Critical Review. Molecules, 20, 88-110.
https://doi.org/10.3390/molecules20010088
[24]  Duan, S., Han, G., Su, Y., Zhang, X., Liu, Y., Wu, X. and Li, B. (2016) Magnetic Co@g-C3N4 Core-Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir, 32, 6272-6281.
https://doi.org/10.1021/acs.langmuir.6b01248
[25]  Yu, X., Yang, X. and Li, G. (2018) Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities. Journal of Electronic Materials, 47, 672-676.
https://doi.org/10.1007/s11664-017-5835-8
[26]  Xia, X., Zhou, C., Tong, D., Liu, M., Zhang, D., Fang, M. and Yu, W. (2010) Preparation of Magnetic Graphitic Carbon Nitride Nanocomposites. Materials Letters, 64, 2620-2623.
https://doi.org/10.1016/j.matlet.2010.08.064
[27]  Wang, Y., Wang, X. and Antonietti, M. (2012) Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition, 51, 68-89.
https://doi.org/10.1002/anie.201101182
[28]  Yan, S.C., Li, Z.S. and Zou, Z.G. (2009) Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir, 25, 10397-10401.
https://doi.org/10.1021/la900923z
[29]  Baig, R.B.N., Verma, S., Varma, R.S. and Nadagouda, M.N. (2016) Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes. ACS Sustainable Chemistry & Engineering, 4, 1661-1664.
https://doi.org/10.1021/acssuschemeng.5b01610
[30]  Chen, Z., Zhang, J., Zheng, S., Ding, J., Sun, J., Dong, M., Abbas, M., Chen, Y., Jiang, Z. and Chen, J. (2018) The Texture Evolution of g-C3N4 Nanosheets Supported Fe Catalyst During Fischer-Tropsch Synthesis. Molecular Catalysis, 444, 90-99.
https://doi.org/10.1016/j.molcata.2016.12.011
[31]  Beveridge, J.S., Stephens, J.R. and Williams, M.E. (2011) The Use of Magnetic Nanoparticles in Analytical Chemistry. Annual Review of Analytical Chemistry, 4, 251-273.
https://doi.org/10.1146/annurev-anchem-061010-114041

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413