全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Gallium Arsenide Thermal Expansion Coefficient by Extended X-Ray Absorption Fine Structure

DOI: 10.4236/wjcmp.2019.92003, PP. 37-46

Keywords: Negative Thermal Expansion, Tension Effects, EXAFS, Asymmetry, Gallium Arsenide

Full-Text   Cite this paper   Add to My Lib

Abstract:

Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient αbond has been evaluated and compared to negative expansion coefficient αtens due to tension effects. The overall thermal expansion coefficient is the sum?ofαbond?and αtens. Below 60 K, αtens is greater than αbond? yielding to a negative expansion in this temperature region. Tension effects are progressively overcome by the stretching effects in the region 60 - 300 K. The asymmetry of nearest neighbors distribution is not negligible since the gaussian approximation underestimates the bond expansion by about 0.00426 Å. This error decreases when the temperature is lowered. The accuracy in the thermal expansion evaluation and the connection between third cumulant and thermal expansion are discussed.

References

[1]  Tipler, P.A. and Mosca, G. (2008) Physics for Scientists and Engineers. Worth Publishers, New York.
[2]  Evans, J.S.O. (1999) Negative Thermal Expansion Materials. Journal of Chemical Society, Dalton Transactions, 19, 3317-3326.
https://doi.org/10.1039/a904297k
[3]  Roy, R., Agarwal, D.K. and McKinstry, H.A. (1989) Very Low Thermal Expansion Coefficient Materials. Annual Review of Material Science, 19, 59-81.
https://doi.org/10.1146/annurev.ms.19.080189.000423
[4]  Lind, C. (2012) Two Decades of Negative Thermal Expansion Research: Where Do We Stand? Materials, 5, 1125-1154.
https://doi.org/10.3390/ma5061125
[5]  Takenaka, K. (2012) Negative Thermal Expansion Materials: Technological Key for Control of Thermal Expansion. Science and Technology of Advanced Materials, 13, Article ID: 013001.
https://doi.org/10.1088/1468-6996/13/1/013001
[6]  Troger, L., Yokoyama, T., Arvanitis, D., Lederer, T., Tischer, M. and Baberschke, K. (1993) Determination of Bond Lengths, Atomic Mean-Square Relative Displacements, and Local Thermal Expansion by Means of Soft X-Ray Photoabsorption. Physical Review B, 49, 888-903.
https://doi.org/10.1103/PhysRevB.49.888
[7]  Dalba, G., Fornasini, P., Grisenti, R. and Purans, J. (1999) Anharmonicity and Thermal Expansion in Crystalline Germanium. Journal of Synchrotron Radiation, 6, 253-254.
https://doi.org/10.1107/S0909049598017105
[8]  Tranquada, J.M. and Ingalls, R. (1983) Extended X-Ray-Absorption Fine Structure Study of Anharmonicity in CuBr. Physical Review B, 28, 3520-3528.
https://doi.org/10.1103/PhysRevB.28.3520
[9]  Dalba, G., Fornasini, P., Gotter, R. and Rocca, F. (1995) Anharmonicity Effects on the Extended X-Ray-Absorption Fine Structure: The Case of βAgI. Physical Review B, 52, 149-157.
https://doi.org/10.1103/PhysRevB.52.149
[10]  Dalba, G., Diop, D., Fornasini, P. and Rocca, F. (1994) An EXAFS Study of Thermal Disorder in GaAs. Journal of Physics: Condensed Matter, 6, 3599.
https://doi.org/10.1088/0953-8984/6/19/016
[11]  Lee, P.A., Citrin, P.H., Eisenberger, P. and Kincaid, B.M. (1981) Extended X-Ray Absorption Fine Structure—Its Strengths and Limitations as a Structural Tool. Reviews of Modern Physics, 53, 769-806.
https://doi.org/10.1103/RevModPhys.53.769
[12]  Bunker, G. (1983) Application of the Ratio Method of EXAFS Analysis to Disordered Systems. Nuclear Instruments and Methods in Physics Research, 207, 437-444.
https://doi.org/10.1016/0167-5087(83)90655-5
[13]  Crozier, E.D., Rehr, J.J. and Ingalls, R. (1995) X-Ray Absorption. John Wiley and Sons, New York.
[14]  Dalba, G., Fornasini, P., Grisenti, R. and Purans, J. (1999) Sensitivity of Extended X-Ray-Absorption Fine Structure to Thermal Expansion. Physical Review Letter, 82, 4240-4243.
https://doi.org/10.1103/PhysRevLett.82.4240
[15]  Tranquada, J.M. and Ingalls, R. (1986) X-Ray-Absorption Study of CuBr at High Pressure. Physical Review B, 34, 4267.
https://doi.org/10.1103/PhysRevB.34.4267
[16]  Egami, T. and Billinge, S.J.L. (2003) Underneath the Bragg Peaks: Structural Analysis of Complex Materials.
[17]  Abd el All, N., Dalba, G., Diop, D., Fornasini, P., Grisenti, R., Mathon, O., Rocca, F., Thiodjio Sendja, B. and Vaccari, M. (2012) Negative Thermal Expansion in Crystals with the Zincblende Structure: An EXAFS Study of CdTe. Journal of Physics: Condensed Matter, 24, Article ID: 115403.
https://doi.org/10.1088/0953-8984/24/11/115403
[18]  Aschroft, N.W. and Mermin, N.D. (1976) Solid State Physics. Thomson Brooks/Cole.
[19]  Barrera, G.D., Bruno, J.A.O., Barron, T.H.K. and Allan, N.L. (2005) Negative Thermal Expansion. Journal of Physics: Condensed Matter, 17, R217.
https://doi.org/10.1088/0953-8984/17/4/R03
[20]  Bruno, J.A.O., Allan, N.L., Barron, T.H.K. and Turner, A.D. (1998) Thermal Expansion of Polymers: Mechanisms in Orthorhombic Polyethylene. Physical Review B, 58, 8416-8427.
https://doi.org/10.1103/PhysRevB.58.8416
[21]  Mary, T.A., Evans, J.S.O., Vogt, T. and Sleight, A.W. (1996) Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science, 272, 90-92.
https://doi.org/10.1126/science.272.5258.90
[22]  Heine, V., Welche, P.R.L. and Dove, M.T. (1999) Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures. Journal of the American Ceramic Society, 82, 1793-1802.
https://doi.org/10.1111/j.1151-2916.1999.tb02001.x
[23]  Tao, J.Z. and Sleight, A.W. (2003) The Role of Rigid Unit Modes in Negative Thermal Expansion. Journal of Solid State Chemistry, 173, 442-448.
https://doi.org/10.1016/S0022-4596(03)00140-3
[24]  Sanson, A., Rocca, F., Dalba, G., Fornasini, P., Grisenti, R., Dappiagi, M. and Artioli, G. (2006) Negative Thermal Expansion and Local Dynamics in Cu2O and Ag2O. Physical Review B, 73, Article ID: 214305.
https://doi.org/10.1103/PhysRevB.73.214305
[25]  Smith, T.F. and White, G.K. (1975) The Low-Temperature Thermal Expansion and Grüneisen Parameter of Some Tetrahedrally Bonded Solids. Journal of Physics C: Solid State Physics, 8, 2031-2042.
https://doi.org/10.1088/0022-3719/8/13/012
[26]  White, G.K. (2006) Solids: Thermal Expansion and Contraction. Contemporary Physics, 34, 193-204.
https://doi.org/10.1080/00107519308213818
[27]  Ahmed, S.I., Dalba, G., Fornasini, P., Vaccari, M., Rocca, F., Sanson, A., Li, J. and Sleight, A.W. (2009) Negative Thermal Expansion in Crystals with the Delafossite Structure: An Extended X-Ray Absorption Fine Structure Study of CuScO2 and CuLaO2. Physical Review B, 79, Article ID: 104302.
https://doi.org/10.1103/PhysRevB.79.104302
[28]  Touloukian, Y.S., Kirby, R.K., Taylor, R.E. and Desay, P.D. (2008) Thermophysical Properties of Matter. Vol. 13, Plenum, New York.
[29]  Ahmed, S.I., Aquilanti, G., Novello, N., Olivi, L., Grisenti, R. and Fornasini, P. (2013) Local Vibrational Properties of GaAs Studied by Extended X-Ray Absorption Fine Structure. The Journal of Chemical Physics, 139, Article ID: 164512.
https://doi.org/10.1063/1.4826629
[30]  Vaccari, M., Grisenti, R., Fornasini, P., Rocca, F. and Sanson, A. (2007) Negative Thermal Expansion in CuCl: An Extended X-Ray Absorption Fine Structure Study. Physical Review B, 75, Article ID: 184307.
https://doi.org/10.1103/PhysRevB.75.184307
[31]  Fornasini, P., Monti, F. and Sanson, A. (2001) Anharmonicity in EXAFS of Crystals. Journal of Synchrotron Radiation, 8, 1214-1220.
https://doi.org/10.1107/S0909049501014923
[32]  Novikova, S.I. (1961) Fiz. Tverd. Tela 3, 178. [English Transl.: Soviet. Phys. Solid State, 3, 129].
[33]  Leszczynski, M., Pluzhnikov, V.B., Czopnik, A., Bak-Misiuk, J. and Slupinski, T. (1997) Thermal Expansion of GaAs: Te and AlGaAs: Te at Low Temperatures. Journal of Applied Physics, 82, 4678-4680.
https://doi.org/10.1063/1.366207
[34]  Fornasini, P. and Grisenti, R. (2014) The Coefficient of Bond Thermal Expansion Measured by Extended X-Ray Absorption Fine Structure. The Journal of Chemical Physics, 141, Article ID: 164503.
https://doi.org/10.1063/1.4899073
[35]  Fornasini, P., Beccara, S., Dalba, G., Grisenti, R., Sanson, A., Vaccari, M. and Rocca, F. (2004) Extended X-Ray Absorption Fine Structure Measurements of Copper: Local Dynamics, Anharmonicity and Thermal Expansion. Physical Review B, 70, Article ID: 174301.
https://doi.org/10.1103/PhysRevB.70.174301
[36]  Fornasini, P., Grisenti, R., Dappiagi, M., Agostini, G. and Miyanaga, T. (2017) Nearest-Neighbour Distribution of Distances in Crystals from Extended X-Ray Absorption Fine Structure. The Journal of Chemical Physics, 147, Article ID: 044503.
https://doi.org/10.1063/1.4995435
[37]  Sanson, A. (2009) On the Neglecting of Higher-Order Cumulants in EXAFS Data Analysis. Journal of Synchrotron Radiation, 16, 864-868.
https://doi.org/10.1107/S0909049509037716
[38]  Frenkel, A.I. and Rehr, J.J. (1993) Thermal Expansion and X-Ray Absorption Fine Structure Cumulants. Physical Review B, 48, 585-588.
https://doi.org/10.1103/PhysRevB.48.585
[39]  Mustre de Leon, J., Conradson, S.D., Batistic, I., Bishop, A.R., Raistrick, I.D., Aronson, M.C. and Garzon, F.H. (1992) Axial Oxygen-Centered Lattice Instabilities in YBa2Cu3O7: An Application of the Analysis of Extended X-Ray-Absorption Fine Structure in Anharmonic Systems. Physical Review B, 45, 2447-2457.
https://doi.org/10.1103/PhysRevB.45.2447
[40]  Beccara, S.A. and Fornasini, P. (2008) Path-Integral Monte Carlo Calculation of the Effects of Thermal Disorder in Extended X-Ray-Absorption Fine Structure of Copper. Physical Review B, 77, Article ID: 172304.
https://doi.org/10.1103/PhysRevB.77.172304
[41]  Sanson, A. (2010) Local Dynamical Properties of Crystalline Germanium and Their Effects in Extended X-Ray Absorption Fine Structure. Physical Review B, 81, Article ID: 012304.
https://doi.org/10.1103/PhysRevB.81.012304

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133