全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

静电纺丝技术在锂-空气电池上的应用
Applications of Electrospinning in Lithium-Air Batteries

DOI: 10.13208/j.electrochem.161121

Keywords: 锂-空气电池,静电纺丝,催化剂,纳米纤维,
lithium-air batteries
,electrospinning,catalysts,nanofibers

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 近年来,锂-空气电池由于具有极高的理论容量和对环境友好等优势,作为“终极电池”引起了广大科研工作者和电动汽车公司的极大兴趣和广泛关注. 但目前锂-空气电池还存在着充放电过电位大、循环性能差等局限性,寻找高效的锂-空气电池催化剂成为该领域发展的研究热点之一. 锂-空气电池阴极催化剂主要有贵金属、非贵金属、碳材料以及金属氧化物等,可通过多种方法合成制备,如水热(溶剂热)法、溶胶-凝胶法、共沉淀法、静电纺丝法等等. 其中,静电纺丝技术由于具有制备方法简易、高效且产量高等优点,近年来得到了长足的发展,可以用来大量制备锂-空气电池阴极催化剂,甚至制备自支撑结构的锂-空气电池阴极催化剂材料. 本文综述了静电纺丝技术在锂-空气电池上的应用,主要包括利用静电纺丝技术制备非贵金属催化剂、碳材料催化剂、金属氧化物催化剂和复合催化剂等,以及将制备的催化剂组装成锂-空气电池后表现出的优异的电池性能.
Lithium-air batteries have received increasing attention as the “ultimate batteries” due to their extremely high theoretical capacity and environment friendly. However, there are still many obstacles hindering the wide applications of the lithium-air batteries owing to the limitations of large charge-discharge over-potentials, poor Columbic efficiency and cycling performance. Exploring of high-efficiency, low-cost and eco-friendly catalysts is one of the vital issues for lithium-air batteries. Meanwhile, electrospinning techniques have been under substantial developments due to its simple fabrication process, high efficiency and production. This paper reviews the recent progresses in fabrications of various novel catalysts for lithium-air batteries with electrospinning techniques, which mainly focuses on the non-precious metals catalysts, carbon-based catalysts, metal oxides catalysts and their hybrid composites

References

[1]  Chaudhari S, Srinivasan M. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(43): 23049-23056.
[2]  Salvador-Pascual J J, Citalán-Cigarroa S, Solorza-Feria O. Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media[J]. Journal of Power Sources, 2007, 172(1): 229-234.
[3]  Zhang X Z, Han D, He Y B, et al. Mesoporous Cr2O3 nanotubes as an efficient catalyst for Li-O2 batteries with low charge potential and enhanced cyclic performance[J].Journal of Materials Chemistry A, 2016, 4(20): 7727-7735.
[4]  Li L Y, Shen L, Nie P, et al. Porous NiCO2O4 nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2015, 3(48): 24309-24314.
[5]  Li J, Li Y, Guo K, et al. Porous MnNi2O4 nanorods as an efficient bifunctional catalyst for rechargeable Li-O2 battery[J]. Intenational Journal of Electrochemical science, 2016, 11(4): 3227-3237.
[6]  Li C, Han X P, Cheng F Y, et al. Phase and composition controllable synthesis of cobalt manganese spinel nano-particles towards efficient oxygen electrocatalysis[J]. Nature Communications, 2015, 6: 7345.
[7]  De Koninck M, Marsan B. MnxCu1-xCO2O4 used as bifunctional electrocatalyst in alkaline medium[J]. Electrohimica Acta, 2008, 53(23): 7012-7021.
[8]  Jung K N, Lee J I, Yoon S, et al. Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 21845-21849.
[9]  Xu S M, Zhu Q C, Du F H, et al. CO3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability[J]. Dalton Transactions, 2015, 44(18): 8678-8684.
[10]  Sun B, Zhang J Q, Munroe P, et al. Hierarchical NiCO2O4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous Li-O2 batteries[J]. Electrochemistry Communications, 2013, 31(6): 88-91.
[11]  Zhou X H, Shang C Q, Gu L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 3058-3063
[12]  Wang Z L, Xu D, Xu J J, et al. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes[J]. Chemical Society Reviews, 2014, 43(22): 7746-7786.
[13]  Tong S F(童圣富), He P(何平), Zhang X P(张雪苹), et al. Lithium air batteries: Non-aqueous and hybrid systems[J]. Journal of Electrochemistry(电化学), 2015, 21(3): 234-252.
[14]  Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15): 2223-2253.
[15]  Ryu W H, Yoon T H, Song S H, et al. Bifunctional composite catalysts using CO3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries[J]. Nano Letters, 2013, 13(9): 4190-4197.
[16]  Liu T(刘通), Li N(李娜), Liu Q C(刘清朝), et al. Porous Co3O4 hollow nanospheres cathode catalyst for high-capacity and long-cycle Li-air batteries[J]. Journal of Electrochemistry(电化学), 2015, 21(2): 157-161.
[17]  Kim J M, Joh H I, Jo S M, et al. Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation[J]. Electrochimica Acta, 2010, 55(16): 4827-4835.
[18]  Wang Y Z, Li Y X, Sun G, et al. Fabrication of Au/PVP nanofiber composites by electrospinning[J]. Journal of Applied Polymer Science, 2007, 105(6): 3618-3622.
[19]  Wu J, Park H W, Yu A, et al. Facile synthesis and evaluation of nanofibrous iron-carbon based non-precious oxygen reduction reaction catalysts for Li-O2 battery applications[J]. The Journal of Physical Chemistry C, 2012, 116(17): 9427-9432.
[20]  Li J X, Zou M Z, Chen L Z, et al. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014,2(27): 10634-10638.
[21]  Song M J, Kim I T, Kim Y B, et al. Self-standing, binder-free electrospun CO3O4/carbon nanofiber composites for non-aqueous Li-air batteries[J]. Electrochimica Acta, 2015, 182: 289-296.
[22]  Wu J, Yang Z R, Li X W, et al. Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction[J]. Journal of Materials Chemistry A, 2013, 1(24): 9889-9896.
[23]  Li P F, Zhang J K, Yu Q L, et al. One-dimensional porous La0.5Sr0.5CoO2.91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Electrochimica Acta, 2015, 165: 78-84.
[24]  Liu G X, Chen H B, Xia L, et al. Hierarchical mesoporous/macroporous perovskite La0.5Sr0.5CoO3-x nanotubes: A bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22478-22486.
[25]  Zhang P, He M, Xu S, et al. The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2015, 3(20): 10811-10818.
[26]  Débart A, Bao J, Armstrong G, Bruce P G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[27]  Li D, McCann J T, Xia Y N, et al. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes[J]. Journal of the American Ceramic Society, 2006, 89(6): 1861-1869.
[28]  Lu X F, Wang C, Wei Y. One-dimensional composite nanomaterials: synthesis by electrospinning and their applications[J]. Small, 2009, 5(21): 2349-2370.
[29]  Wu J, Wang N, Zhao Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013, 1(25): 7290-7305.
[30]  Mai L Q, Xu L, Han C H, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano Letters, 2010, 10(11): 4750-4755.
[31]  Zhang L X, Zhang S L, Zhang K J, et al. Mesoporous NiCO2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries[J]. Chemical Communications, 2013, 49(34): 3540-3542.
[32]  Toh R J, Eng A Y S, Sofer Z, et al. Ternary transition metal oxide nanoparticles with spinel structure for the oxygen reduction reaction[J]. ChemElectroChem, 2015, 2(7): 982-987.
[33]  Huang J Q, Zhang B, Xie Y Y, et al. Electrospun graphitic carbon nanofibers with in-situ encapsulated Co-Ni nanoparticles as freestanding electrodes for Li-O2 batteries[J]. Carbon, 2016, 100: 329-336.
[34]  Sun D, Shen Y, Zhang W, et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries[J]. Journal of the American Chemical Society, 2014, 136(25): 8941-8946.
[35]  Ma Z, Yuan X X, Li L, et al. A review of cathode materials and structures for rechargeable lithium-air batteries[J].Energy & Environmental Science, 2015, 8(8): 2144-2198. [32] Xu J J, Xu D, Wang Z L,et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandat Chemie International Edition, 2013, 52(14): 3887-3890.
[36]  Xue H R, Mu X W, Tang J, et al. A nickel cobaltate nanoparticle-decorated hierarchical porous N-doped carbon nanofiber film as a binder-free self-supported cathode for nonaqueous Li-O2 batteries[J]. Journal of Materials Chemistry A, 2016, 4(23): 9106-9112.
[37]  Song M J, Shin M W. Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery[J]. Applied Surface Science, 2014, 320: 435-440.
[38]  Nie H J, Xu C, Zhou W, et al. Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1937-1942.
[39]  Park H W, Lee D U, Zamani P, et al. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries[J]. Nano Energy, 2014, 10: 192-200.
[40]  Kang S H, Song K, Jung J, et al. Polymorphism-induced catalysis difference of TiO2 nanofibers for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2(46): 19660-19664.
[41]  Cheng F Y, Chen J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192.
[42]  Lee J S, Tai Kim S, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1): 34-50.
[43]  Shao Y Y, Park S, Xiao J, et al. Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective[J]. ACS Catalysis, 2012, 2(5): 844-857.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133