全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Ag-TiO2-MnO2复合材料的制备与电化学性能研究
Preparation and Electrochemical Performance of Ag-TiO2-MnO2 Composites

DOI: 10.13208/j.electrochem.171130

Keywords: 二氧化锰阴极材料,Ag-TiO2,修饰,电化学性能,

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 采用高温固相法制备了Ag-TiO2共修饰的二氧化锰锂电池阴极材料,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)、能量散射X射线能谱(EDS)、循环伏安测试(CV)、恒流放电测试、交流阻抗测试(EIS)等分别检测了所制备样品的物理-化学特性及相应的电化学性能特征.结果表明:空白二氧化锰与修饰后二氧化锰均为β 晶型,相比于未修饰样品,Ag-TiO2-MnO2 样品的形貌得到了明显的改变.修饰后样品大倍率的放电比容量显著提升,1C 下的容量由 75mAh·g-1 增加到 115mAh·g-1,Ag-TiO2-MnO2 样品 Mn-O 键能的增强对于抑制放电过程中体积膨胀也有一定作用,可以使二氧化锰材料保持较好的结构稳定性.
The silver-titanium dioxide co-modified manganese dioxide (Ag-TiO2-MnO2) cathode material was prepared through high temperature solid state reaction. The microstructure, phase composition and electrochemical performance of the prepared samples were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), Energy-dispersive X-ray spectroscopy (EDS), Cyclic voltammetry (CV), galvanostatic discharge and electrochemical impedance spectroscopy (EIS). Results showed that the unmodified and Ag-TiO2 modified MnO2 samples both exhibited β-MnO2 structurebut with different morphologies. The EDS mapping results revealed that Ag was uniformly dispersed on the surface of manganese dioxide, while Ti was relatively non-uniform in the Ag-TiO2-MnO2 sample. The modified samples were effective in improving specific discharge capacities. The specific discharge capacity increased from 75 mAh·g-1 to 115 mAh·g-1 at the rate of 1C. The stronger bond energy of Mn-O in the modified MnO2 could suppress the volume expansion during the discharge process, which can maintain the structural stability of the manganese dioxide material

References

[1]  Hu X F, Cheng F Y, Han X P, et al. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries[J]. Small, 2015, 11(7): 809-813.
[2]  Guo D L, Wei X G, Chang Z R, et al. Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 632: 222-228.
[3]  Gheorghiu F, Simenas M, Ciomaga C E, et al. Preparation and structural characterization of Fe-doped BaTiO3 diluted magnetic ceramics[J]. Ceramics International, 2017, 43(13): 9998-10005.
[4]  Huang Z, Zhang M, Cheng J F, et al. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium-oxygen battery[J]. Journal of Alloys and Compounds, 2015, 626: 173-179.
[5]  Wu M S, Chiang P C J, Lin J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): A47-A52.
[6]  Wang J G, Yang Y, Huang Z H, et al. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors[J]. Journal of Power Sources, 2012, 204: 236-243.
[7]  Hu X F, Cheng F Y, Han X P, et al. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries[J]. Small, 2015, 11(7): 809-813.
[8]  Gao J(高军), Huang X K(黄行康), Yang Y(杨勇). Electrochemical capacitance characteristics for MnO2/C composite[J]. Journal of Electrochemistry(电化学), 2007, 13(3): 279-283.
[9]  Li W N, Yuan J K, Gomez-Mower S, et al. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes[J]. Journal of Physical Chemistry B, 2006, 110(7): 3066-3070.
[10]  Huang Z, Zhang M, Cheng J F, et al. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium-oxygen battery[J]. Journal of Alloys and Compounds, 2015, 626: 173-179.
[11]  Liu Q L, Wang S P, Cheng H. High rate capabilities Fe-doped EMD electrodes for Li/MnO2 primary battery[J]. International Journal of Electrochemical Science, 2013, 8(8): 10540-10548.
[12]  Dawson J A, Tanaka I. Li intercalation into a β-MnO2 Grain Boundary[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8125-8131.
[13]  Ogata A, Komaba S, Baddour-Hadjean R, et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta, 2008, 53(7): 3084-3093.
[14]  Wang J G, Yang Y, Huang Z H, et al. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors[J]. Journal of Power Sources, 2012, 204: 236-243.
[15]  Guo D L, Wei X G, Chang Z R, et al. Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 632: 222-228.
[16]  Gheorghiu F, Simenas M, Ciomaga C E, et al. Preparation and structural characterization of Fe-doped BaTiO3 diluted magnetic ceramics[J]. Ceramics International, 2017, 43(13): 9998-10005.
[17]  Zeng J, Wang S P, Yu J X, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries[J]. Journal of Solid State Electrochemistry, 2014, 18(6): 1585-1591.
[18]  Huang X K(黄行康), Chang H T(常海涛), Gan J L(甘健龙), et al. Preparation and electrochemical properties of layered manganese oxide(Li-birnessite type)[J]. Journal of Electrochemistry(电化学), 2009, 15(2): 194-197.
[19]  Ogata A, Komaba S, Baddour-Hadjean R, et al. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta, 2008, 53(7): 3084-3093.
[20]  Zeng J, Wang S P, Yu J X, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries[J]. Journal of Solid State Electrochemistry, 2014, 18(6): 1585-1591.
[21]  Wang S P, Liu Q L, Yu J X, et al. Anisotropic expansion and high rate discharge performance of V-doped MnO2 for Li/MnO2 primary battery[J]. International Journal of Electrochemical Science, 2012, 7(2): 1242-1250.
[22]  Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell II. X-ray diffractional and electrochemical characterization on deep discharge products of electrolytic manganese dioxide[J]. Journal of the Electrochemical Society, 1990, 137(1): 40-46.
[23]  Zeng J, Wang S P, Liu Q L, et al. High-capacity V-/Sc-/Ti-doped MnO2 for Li/MnO2 batteries and structural changes at different discharge depths[J]. Electrochimica Acta, 2014, 127: 115-122.
[24]  Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell II. X-ray diffractional and electrochemical characterization on deep discharge products of electrolytic manganese dioxide[J]. Journal of the Electrochemical Society, 1990, 137(1): 40-46.
[25]  Wu M S, Chiang P C J, Lin J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): A47-A52.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133