|
- 2018
连续时间Guichardet-Fock空间中修正随机梯度算子的性质
|
Abstract:
摘要: 讨论了连续时间Guichardet-Fock空间L2(Γ;η)中修正随机梯度算子及修正点态随机梯度算子族{s;s∈R+}的性质。讨论表明:修正随机梯度算子是L2(Γ;η)中的稠定无界线性算子,而修正点态随机梯度算子族{s;s∈R+}及其共轭族{*s;s∈R+}是L2(Γ;η)中的有界线性算子,具有很多性质:满足典则反交换关系和幂零性;{s;s∈R+}与{*s;s∈R+}的不等时复合可交换,即s*s=*ss,对∠s≠t;同时{*ss;s∈R+}是L2(Γ;η)上一族正交投影。另外,利用{s;s∈R+}和{*s;s∈R+},构造了L2(Γ;η)上一个酉算子群。
Abstract: The paper investigate the properties of the modified stochastic gradient operator and modified point-state stochastic gradient operators {s;s∈R+} in continuous-time Guichardet-Fock space L2(Γ;η). We show that the modified stochastic gradient operator is a unbounded, densely defined linear operator in L2(Γ;η); the family of modified point-state stochastic gradient operators {s;s∈R+} and its adjoint {*s;s∈R+} are bounded linear operator, which have many properties. For example, they satisfies the canonical anti-commutation relations(CAR)and nilpotency; s*s=*ss, for ∠s≠t, which means that, the family of operators{s;s∈R+} and {*s;s∈R+} are commutive for ∠s≠t; the operator {*ss;s∈R+} is a family of orthogonal projections on L2(Γ;η). Meanwhile, we construct a unitary operator group on L2(Γ;η) with the point-state modified stochastic gradient {s;s∈R+} and its adjoint {*s;s∈R+}
[1] | LHUDSON R, PARTHASARATHE K R. Quantum Itos formula and stochastic evolutions[J]. J Comm Math Phys, 1984, 93:301-323. |
[2] | WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. J Math Anal Appl, 2011, 373(2):643-654. |
[3] | WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum bernoulli noises[J]. Journal of Applied Mathematical Physics, 2010, 51(5):053528. Doi:10.1063/1.3431028. |
[4] | HUANG Zhiyuan. Quantum white noises-white noise approach to quantum stochastic calculus[J]. J Nagoya Math, 1993, 129:23-42. |
[5] | OBATA N. White noise calculus and Fock space[M]. New York: Springer-Verlag, 1994. |
[6] | PARTHASARATHE K R. An introduction to quantum stochastic calculus[M]. Basel: Birkhauser, 1992. |
[7] | BARGMANN V. On a Hilbert space of analytic functions and an associated integral transform[J]. J Comm Pure Appl Math, 1961, 14:187-214. |
[8] | SEGAL I E. The complex wave representation of the free Boson filed[M] // GOHBERG I, KAC M. Topics in Functional Analysis in Adv Math Suppl Stud. New York: Academic Press, 1978: 321-343. |
[9] | ZHANG Jihong, WANG Caishi, TIAN Lina. Localization of unbounded operators on Guichardet spaces[J]. Journal of Applied Mathematics and Physics, 2015, 3:792-796. |
[10] | ATTAL S, LINDSAY J M. Quantum stochastic calculus with maximal operator domains[J]. Annals of Probability, 2004, 32(1A):488-529. |