|
- 2018
一类非线性二阶常微分方程 Dirichlet问题正解的存在性
|
Abstract:
摘要: 运用锥上的不动点定理研究了一类带 Dirichlet 边界条件的二阶边值问题{u″(t)+a(t)u(t)+f(t,u(t))=0, t∈(0,1),u(0)=u(1)=0正解的存在性, 其中 a∈C([0,1], [0,∞))且在(0,1)的任意子区间内 a(t)?0, f∈C([0,1]×[0,∞), [0,∞))。所得结果推广和改进了已有工作的相关结果。
Abstract: The existence of positive solutions for a class of second-order Dirichlet problem{u″(t)+a(t)u(t)+f(t,u(t))=0, t∈(0,1),u(0)=u(1)=0is studied by using the fixed-point theorem in cones, where a∈C([0,1], [0,∞))and a(t)?0 on any subinterval of(0,1), f∈C([0,1]×[0,∞), [0,∞)). The results generalize and improve the related results of the existingwork
[1] | ALKHUTOV Y, BORSUK M. The Dirichlet problem in a cone for second-order elliptic quasi-linear equation with the <i>p</i>-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2017, 449(2):1351-1367. |
[2] | WAN Haitao. The second-order expansion of solutions to a singular Dirichlet boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2015, 427(1):140-170. |
[3] | DUMANYAN V Z. On the solvability of the Dirichlet problem for a second-order elliptic equation[J]. Doklady. Natsional'naya Akademiya Nauk Armenii, 2014, 114(4):295-308. |
[4] | 徐登州, 马如云. 线性微分方程的非线性扰动[M]. 北京: 科学出版社, 2008:214-218. XU Dengzhou, MA Ruyun. Nonlinear disturbance of linear differential equation[M]. Beijing: Science Press, 2008:214-218. |
[5] | 马如云. 非线性常微分方程非局部问题[M]. 北京: 科学出版社, 2004:18-20. MA Ruyun. Nonlocal problem of nonlinear ordinary differential equation[M]. Beijing: Science Press, 2004:18-20. |
[6] | EFENDIEV B I. The Dirichlet problem for an ordinary continuous second-order differential equation[J]. Matematicheskie Zametki, 2018, 103(2):295-302. |
[7] | ZHAO Jin, WANG Yanchao. Nontrivial solutions of second-order singular Dirichlet systems[J]. Boundary Value Problems, 2017, 180(14):34-15. |
[8] | WANG Hanyan. On the existence of positive solutions for semilinear elliptic equations in the annulus[J]. Journal of Differential Equations, 1994, 109(1):1-7. |
[9] | LI Yongxiang. Positive solutions of second-order boundary value problems with sign-changing nonlinear terms[J]. Journal of Mathematical Analysis and Applications, 2003, 282(1):232-240. |
[10] | GRITSANS A, SADYRBAEV F, YERMACHENKO I. Dirichlet boundary value problem for the second-order asymptotically linear system[J]. International Journal of Differential Equations, 2016, 35(5):1-12. |