|
- 2018
汉坦病毒传播模型行波解的存在性
|
Abstract:
摘要: 考虑了具有扩散-反应的汉坦病毒传播模型。 利用Schauder不动点定理证明了模型行波解的存在性且给出了最小波速。 通过构造负单边拉普拉斯证明了行波解的不存在性。
Abstract: In this paper, we consider a diffusion-reaction model for the spread of hantavirus. The existence of traveling wave solutions is obtained by Schauders fixed point theorem and the minimal wave speed is given. The nonexistence of traveling wave solutions is obtained by introducing a negative one-sided Laplace transform
[1] | ZEIDLER E. Nonlinear functional analysis and its applications I[M]. New York: Springer, 1986. |
[2] | 易静. 肾综合征出血热患者血浆病毒载量的检测及其与病程病情关系的研究[D]. 西安: 第四军医大学, 2012. YI jing. Study on the relationship between plasma viral load and disease course in patients with hemorrhagic fever with renal syndrome[D]. Xian: The Fourth Military Medical University, 2012. |
[3] | BARBER E, CURRò C, VALENTI G. A hyperbolic reaction-diffusion model for the hantavirus infection[J]. Mathematical Methods in the Applied Sciences, 2008, 31(4):481-499. |
[4] | ZHANG Tianran, WANG Wendi. Minimal wave speed for a class of non-cooperative diffusion-reaction system[J]. J Differential Equations, 2016, 260(3):2763-2791. |
[5] | PERKO L. Differential equations and dynamical systems[M]. New York: Springer, 2001. |
[6] | 姜黎, 姚美萍. 基于疫区控制措施的汉坦病毒传播模型[J]. 河南科学, 2017, 35(7):1017-1021. JIANG Li, YAO Meiping. Hantavirus transmission model based on epidemic area control measures[J]. Henan Science, 2017, 35(7):1017-1021. |
[7] | ABRAMSON G, KENKRE V M. Traveling waves of infection in the hantavirus epidemics[J]. Bulletin of Mathematical Biology, 2003, 65(3):519-534. |
[8] | ABRAMSON G, KENKRE V M. Spatio-temporal patterns in the hantavirus infection[J]. Physical Review E, 2002, 66:011912. |
[9] | Ahmet G?kdogan, Mehmet Merdan, Ahmet Yildirim. A multistage differential transformation method for approximate solution of Hantavirus infection model[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1):1-8. |