|
- 2018
铁载体在假交替单胞菌Cd2+去除中的作用
|
Abstract:
摘要: 为探索铁载体在微生物重金属去除过程中的作用,利用一株高效除镉菌——假交替单胞菌Pseudoaltermonas species. SCSE709-6(P. sp. SCSE709-6),研究镉(Cd2+)的添加对铁载体产量的影响以及铁载体的添加对菌体去除Cd2+的影响。结果表明:菌体代谢能够产生羟基羧酸盐型铁载体,其产量与细菌生物量相关。在Cd2+浓度为0~0.4 mmol/L时铁载体量呈先增后减的变化趋势,当为0.2 mmol/L时铁载体量最大。当向含镉培养液中加入铁载体时,细菌的适应期缩短,说明铁载体能够与Cd2+络合,从而降低镉的生物毒性,提高细菌对镉的去除效率。研究结果为P. sp. SCSE709-6高效除镉提供了一种科学解释,在微生物修复重金属镉污染中具有潜在的实际应用价值。
Abstract: In order to explore the role of siderophore in the process of removal of heavy metals, Pseudoaltermonas sp. SCSE709-6(P. sp. SCSE709-6), was selected as a representative bacterium. The effect of Cd2+ addition on siderophore production by P. sp. SCSE709-6 and the effect of siderophore addition on the removal of Cd2+ were studied, respectively. Upon O-CAS assay, P. sp. SCSE709-6 showed a vivid positive result for siderophore production. Assays based on chemical properties indicated that siderophore produced by P. sp. SCSE709-6 was carboxylate type. The siderophore yield was correlated with the biomass. Siderophore production was increased first and then decreased when the Cd2+ concentration was 0~0.4 mmol/L, notable this value reached maximum at 0.2 mmol/L. It accelerated the adaptation of P. sp. SCSE709-6 to Cd2+ while siderophore was added to the culture medium, as siderophore could be combined with Cd2+ to reduce the toxicity of cadmium, leading to high removal efficiency of Cd2+. The results provided a scientific explanation of why P. sp. SCSE709-6 is highly efficient in removal of cadmium and P. sp. SCSE709-6 could be recommended as a potential candidate for application in bioremediation of heavy metals
[1] | BRAUD A, GEOFFROY V, HOEGY F, et al. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance[J]. Environmental Microbiology Reports, 2010, 2(3): 419-425. |
[2] | 张玉秀,王姣,柴团耀,等. 铜绿假单胞菌ZGKD2的重金属耐性机制研究[J]. 环境科学, 2012(10): 3613-3619. ZHANG Yuxiu, WANG Jiao, CHAI Tuanyao, et al. Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2[J]. Environmental Science, 2012(10): 3613-3619. |
[3] | ZHOU W, LIU D, ZHANG H O, et al. Bioremoval and recovery of Cd(II)by Pseudoalteromonas sp. SCSE709-6: comparative study on growing and grown cells[J]. Bioresource Technology, 2014(15): 145-151. |
[4] | ZHOU W, ZHANG H O, MA Y, et al. Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas. sp. SCSE709-6[J]. Extremophiles, 2013, 17(5): 723-731. |
[5] | JIANG L, ZHOU W, LIU D, et al. Biosorption isotherm study of Cd<sup>2+</sup>, Pb<sup>2+</sup> and Zn<sup>2+</sup> biosorption onto marine bacterium Pseudoalteromonas sp. SCSE709-6 in multiple systems[J]. Journal of Molecular Liquids, 2017(23):230-237. |
[6] | 张海欧,周维芝,马玉洪,等. 微生物胞外聚合物对重金属镉的解毒作用及红外光谱分析[J]. 光谱学与光谱分析, 2013(11): 3041-3043. ZHANG Haiou, ZHOU Weizhi, MA Yuhong, et al. FTIR spectrum and detoxication of extracellular polymeric substances secreted by microorganism[J]. Spectroscopy and Spectral Analysis, 2013(11): 3041-3043. |
[7] | 王卫星,周晓伦,李忠玲,等. CAS平板覆盖法检测氢氧化细菌铁载体[J]. 微生物学通报, 2014, 41(8): 1692-1697. WANG Weixing, ZHOU Xiaolun, LI Zhongling, et al. Detection of siderophore production from hydrogen-oxidizing bacteria with CAS overlay plate method[J]. Microbiology, 2014, 41(8): 1692-1697. |
[8] | ARNOW L E. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine tyrosine mixtures[J]. Journal of Biological Chemistry, 1937, 118(2):531-537. |
[9] | PATEL A K, DESHATTIWAR M K, CHAUDHARI B L, et al. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp.[J]. Bioresource Technology, 2009, 100(1): 368-373. |
[10] | 付瑾,谢学辉,钱林,等. 皮氏罗尔斯通氏菌株Dx-T3-01的耐镉性能及镉富集机理[J]. 应用与环境生物学报, 2011(5): 717-721. FU Jin, XIE Xuehui, QIAN Lin, et al. Cadmium tolerance and bio-accumulation mechanisms of Ralstonia pickettii strain DX-T3-01[J]. Chinese Journal of Applied & Environmental Biology, 2011(5): 717-721. |
[11] | GAONKAR T, BHOSLE S. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils[J]. Chemosphere, 2013, 93(9): 1835-1843. |
[12] | DIMKPA C O, MERTEN D, SVATOS A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biology and Biochemistry, 2009, 41(1): 154-162. |
[13] | SCHWYN B, NEILANDS J B. Universal CAS assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1): 47-56. |
[14] | NAIR A, JUWARKAR A A, SINGH S K. Production and characterization of siderophores and its application in arsenic removal from contaminated soil[J]. Water, Air, and Soil Pollution, 2007, 180(1-4): 199-212. |
[15] | SINGH A, KAUSHIK M S, SRIVASTAVA M, et al. Siderophore mediated attenuation of cadmium toxicity by paddy field cyanobacterium Anabaena oryzae[J]. Algal Research, 2016(4): 63-68. |
[16] | RASHMI V, SHYLAJANACIYAR M, RAJALAKSHMI R, et al. Siderophore mediated uranium sequestration by marine cyanobacterium Synechococcus elongatus BDU 130911[J]. Bioresource Technology, 2013(4): 204-210. |
[17] | AHMED E, HOLMSTROM S J. Siderophores in environmental research: roles and applications[J]. Microb Biotechnol, 2014, 7(3): 196-208. |
[18] | GIOVANELLA P, CABRAL L, COSTA A P, et al. Metal resistance mechanisms in gram-negative bacteria and their potential to remove Hg in the presence of other metals[J]. Ecotoxicology and Environmental Safety, 2017(6): 162-169. |
[19] | PéRZ-MIRANDA S, CABIROL N, GEORGE-TéLLEZ R, et al. O-CAS, a fast and universal method for siderophore detection[J]. Journal of Microbiological Methods, 2007, 70(1): 127-131. |
[20] | 马玉洪. 深海高效除镉菌株的筛选及其镉去除特性研究[D]. 济南:山东大学, 2012. MA Yuhong. Screening of deep sea bacteria for bioremoval of cadmium and study of removal properties[D]. Jinan:Shandong University, 2008. |
[21] | VALKO M, MORRIS H, CRONIN M T. Metals, toxicity and oxidative stress[J]. Current Medicinal Chemistry, 2005, 12(10): 1161-1208. |
[22] | ALBRECHT-GARY A M, CRUMBLISS A L. Cheminform abstract: coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release[J]. Cheminform, 1998, 29(19): 293-307. |
[23] | SINHA S, MUKHERJEE S K. Cadmium—induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization[J]. Current Microbiology, 2008, 56(1): 55-60. |
[24] | NAIK M M, DUBEY S K. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa Strain 4EA[J]. Current Microbiology, 2011, 62(2): 409-414. |
[25] | DIMKPA C O, SVATOS A, DABROWSKA P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp[J]. Chemosphere, 2008, 74(1): 19-25. |
[26] | 孙红启. 铁载体和铁离子对细菌生长过程的影响[D]. 济南:山东大学, 2008. SUN Hongqi. Effects of siderophore and ferric ion on bacterial growth process[D]. Jinan:Shandong University, 2008. |
[27] | CSáKY T Z. On the estimation of bound hydroxylamine in biological materials[J]. Acta Chemica Scandinavica, 1948, 2(1):450-454. |
[28] | PAYNE S M. Detection, isolation, and characterization of siderophores[J]. Methods in Enzymology, 1994(7): 329-344. |
[29] | GAONKAR T, BORKAR S. Applications of siderophore producing marine bacteria in bioremediation of metals and organic compounds[M].Marine Pollution and Microbial Remediation. Singapore: Springer, 2017: 177-187. |