|
- 2018
电热水器与变频空调负荷群的联合调度控制
|
Abstract:
摘要: 针对能源互联网中的需求侧响应要求,为使家庭负荷响应电力系统功率波动,提出一种基于电热水器与变频空调负荷群的联合调度控制策略。分析电热水器与变频空调作为备用的优势,并建立其响应聚合模型;结合负荷特点,在考虑变频空调负荷群多样性的基础上提出先调电热水器再调变频空调的联合控制策略;结合负荷调度曲线,设定调度死区,对所提调度控制策略进行仿真,验证了所提控制策略在功率调度中应用的有效性,并说明增加负荷数量可以显著提高负荷响应功率调节能力。
Abstract: For the demand response requirements of the energy internet, a joint dispatch control strategy based on the electric water heater and the inverter air conditioner load group were proposed in order to make the household load response to grid power fluctuation. The advantages of electric water heater and inverter air conditioner as power dispatch backup were explained and the response aggregation model was established. Combining the load characteristics, a joint dispatch control strategy which adjusted the electric water heater firstly and the inverter air conditioner secondly was proposed based on the consideration of the diversity of inverter air conditioner load group. The scheduling dead zone was set based on load dispatch curve to simulate the proposed dispatch control strategy, the effectiveness of the proposed control strategy in power dispatch was verified, which showed that increasing the number of loads could significantly improve the load response of power scheduling ability
[1] | 郑竞宏, 朱守真, 王光, 等. 空调负荷运行特性研究及建模[J]. 中国电机工程学报, 2009(10):67-73. ZHENG Jinghong, ZHU Shouzhen, WANG Guang, et al. Key characteristics and modeling of air conditioner load[J]. Chinese Journal of Electrical Engineering, 2009(10):67-73. |
[2] | 贾少青, 陈平, 李爱华. 基于神经网络的变频空调控制系统[J]. 计算机测量与控制, 2006, 14(8):1033-1035. JIA Shaoqing, CHEN Ping, LI Aihua. Control method of inverter air conditioner based on neural network[J]. Computer Measurement & Control, 2006, 14(8):1033-1035. |
[3] | 张新昌, 周逢权. 智能电网引领智能家居及能源消费革新[J].电力系统保护与控制, 2014, 42(5):59-67. ZHANG xinchang, ZHOU Fengquan. Smart grid leads the journey to innovative smart home and energy consumption patterns[J]. Power System Protection and Control, 2014, 42(5):59-67. |
[4] | 王淑青, 杨桦, 何涛. 模糊PID复合控制在变频空调中应用研究[J]. 微计算机信息, 2006, 22(6S):42-44. WANG Shuqing, YANG Hua, HE Tao. Research on fuzzy PID control for air-condition with frequency change[J]. Microcomputer Information, 2006, 22(6S):42-44. |
[5] | 孙建伟, 唐升卫, 刘菲, 等. 面向需求响应控制的家用电热水器建模和控制策略评估[J]. 电力系统及其自动化学报, 2016, 28(4):51-55. SUN Jianwei, TANG Shenwei, LIU Fei, et al. Modeling method and control strategy evaluation of electric water heater for demand response program [J]. Proceedings of the CSU-EPSA, 2016, 28(4):51-55. |
[6] | 王映祥. 电力市场下大规模电热水器用户的需求侧竞价研究[D]. 长沙:长沙理工大学, 2012. WANG Yingxiang. Research on bidding strategy for large-scale electric water heater user participating power market[D]. Changsha: Changsha University of Science and Technology, 2012. |
[7] | KONDOH J, LU N, Hammerstrom D J. An evaluation of the water heater load potential for providing regulation service[J]. IEEE Transactions on Power Systems, 2011, 26(3):1309-1316. |
[8] | 中关村在线. 2014-2015中国空调市场年度报告[EB/OL].(2015-02-05)[2017-12-15].http://tech.hexun.com/2015-02-05/173107490.html. |
[9] | 董丹丹. 基于电热水器类温控负荷的电力系统频率稳定与控制研究[D]. 哈尔滨:哈尔滨工业大学, 2015. DONG Dandan. Research on the stabilization and control power system frequency based on EWH-A type of TCL[D]. Harbin: Harbin Institute of Technology, 2015. |
[10] | LU Ning. An evaluation of the HVAC load potential for providing load balancing service[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1263-1270. |
[11] | PERFUMO C, KOFMAN E, BRASLAVSKY J H, et al. Load management: model-based control of aggregate power for populations of thermostatically controlled loads[J]. Energy Conversion & Management, 2012, 55(3):36-48. |
[12] | 李作锋, 杨斌, 杨永标. 基于日前调度的大规模中央空调调峰方法[J]. 南方电网技术, 2017, 11(1):74-79. LI Zuofeng, YANG Bin, YANG Yongbiao. Peak load regulation method with large scale central air-conditioning load based on day-ahead dispatch[J]. Southern Power Grid Technology, 2017, 11(1):74-79. |
[13] | MASUTA T, YOKOYAMA A. Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters[J]. Smart Grid, IEEE Transactions on, 2012, 3(3):1253-1262. |
[14] | ZHANG Y, LU N. Parameter selection for a centralized thermostatically controlled appliances load controller used for intra-hour load balancing[J]. IEEE Transactions on Smart Grid, 2013, 4(4):2100-2108. |
[15] | 胡雪梅, 任艳艳. 中央空调的变频控制设计及节能分析[J]. 电机与控制应用, 2011, 38(7):44-47. HU Xuemei, REN Yanyan. Design and energy saving analysis of frequency conversion control in central air conditioning[J].Motor and Control Applications, 2011, 38(7):44-47. |
[16] | 王华丽.电热水器的工作原理是什么[EB/OL].(2014-11-14)[2017-12-15]. http://www.c-ps.net/jishu/zhinengfenxi/211998.html. |
[17] | 闫华光, 陈宋宋, 杜重阳, 等. 智能电网电力需求响应标准体系研究与设计[J]. 电网技术, 2015, 39(10):2685-2689. YAN Huaguang, CHEN Songsong, DU Chongyang, et al. Research and design of power demand response standard system about smart grid[J].Power System Technology, 2015, 39(10):2685-2689. |
[18] | 周磊, 李扬, 高赐威. 聚合空调负荷的温度调节方法改进及控制策略[J]. 中国电机工程学报, 2014, 34(31):5579-5589. ZHOU Lei, LI Yang, GAO Ciwei. Improvement of temperature adjusting method for aggregated air-conditioning loads and its control strategy[J]. Chinese Journal of Electrical Engineering, 2014, 34(31): 5579-5589. |
[19] | 郑宗和, 梁江, 牛宝联, 等. 变频空调系统应用神经元PID控制的仿真研究[J]. 暖通空调, 2004, 34(12):93-95. ZHENG Zonghe, LIANG Jiang, NIU Baolian, et al. Simulation study on neural PID control of variable-frequeney air conditioning systems[J]. Heating Ventilating and Air Conditioning, 2004, 34(12):93-95. |
[20] | 高赐威, 李倩玉, 李扬. 基于DLC的空调负荷双层优化调度和控制策略[J]. 中国电机工程学报, 2014, 34(10):1546-1555. GAO Ciwei, LI Qianyu, LI Yang. Bi-level optimal dispatch and control strategy for air-conditioning load based on direct load control[J]. Chinese Journal of Electrical Engineering, 2014, 34(10):1546-1555. |