全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Japanese Alzheimer’s Disease and Other Complex Disorders Diagnosis Based on Mitochondrial SNP Haplogroups

DOI: 10.1155/2012/245038

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper first explains how the relations between Japanese Alzheimer’s disease (AD) patients and their mitochondrial SNP frequencies at individual mtDNA positions examined using the radial basis function (RBF) network and a method based on RBF network predictions and that Japanese AD patients are associated with the haplogroups G2a and N9b1. It then describes a method for the initial diagnosis of Alzheimer’s disease that is based on the mtSNP haplogroups of the AD patients. The method examines the relations between someone’s mtDNA mutations and the mtSNPs of AD patients. As the mtSNP haplogroups thus obtained indicate which nucleotides of mtDNA loci are changed in the Alzheimer’s patients, a person’s probability of becoming an AD patient can be predicted by comparing those mtDNA mutations with that person’s mtDNA mutations. The proposed method can also be used to diagnose diseases such as Parkinson’s disease and type 2 diabetes and to identify people likely to become centenarians. 1. Introduction Mitochondria are essential cytoplasmic organelles generating cellular energy in the form of adenosine triphosphate by oxidative phosphorylation. Because most cells contain hundreds of mitochondria, each having multiple copies of their mitochondrial DNA (mtDNA), each cell contains several thousand mtDNA copies. The mutation rate for mtDNA is very high, and when mtDNA mutations occur, the cells contain a mixture of wild-type and mutant mtDNAs. As the mutations accumulate, the percentage of mutant mtDNAs increases and the amount of energy produced within the cell can decline until it falls below the level necessary for the cell to function normally. When this bioenergetic threshold is crossed, disease symptoms appear and become progressively worse. Mitochondrial diseases encompass an extraordinary assemblage of clinical problems, usually involving tissues that require large amounts of energy, such as those in the heart, skeletal muscle, kidney, and endocrine glands [1–3]. Although there are reports that mtDNA mutations are related to aging and a wide variety of diseases—such as Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D) disease, and various kinds of cancer [4–20]—those reports focus on the amino acid replacements caused by mtDNA mutations. Mitochondrial functions can of course be affected directly by amino acid replacements, but they can also be affected indirectly by mutations in mtDNA control regions. It is, therefore, important to examine the relations between all mtDNA mutations and disease patients or centenarians. In the work

References

[1]  D. C. Wallace, “Mitochondrial diseases in man and mouse,” Science, vol. 283, no. 5407, pp. 1482–1488, 1999.
[2]  M. Vila and S. Przedborski, “Targeting programmed cell death in neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 4, no. 5, pp. 365–375, 2003.
[3]  R. W. Taylor and D. M. Turnbull, “Mitochondrial DNA mutations in human disease,” Nature Reviews Genetics, vol. 6, no. 5, pp. 389–402, 2005.
[4]  F. H. Lin, R. Lin, H. M. Wisniewski et al., “Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer's brains,” Biochemical and Biophysical Research Communications, vol. 182, no. 1, pp. 238–246, 1992.
[5]  J. M. Shoffner, M. D. Brown, A. Torroni et al., “Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients,” Genomics, vol. 17, no. 1, pp. 171–184, 1993.
[6]  S. Kosel, R. Egensperger, P. Mehraein, and M. B. Graeber, “No association of mutations at nucleotide 5460 of mitochondrial NADH dehydrogenase with Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 745–749, 1994.
[7]  U. Mayr-Wohlfart, C. Paulus, and G. R?del, “Mitochondrial DNA mutations in multiple sclerosis patients with severe optic involvement,” Acta Neurologica Scandinavica, vol. 94, no. 3, pp. 167–171, 1996.
[8]  N. M. Schnopp, S. K?sel, R. Egensperger, and M. B. Graeber, “Regional heterogeneity of mtDNA heteroplasmy in Parkinsonian brain,” Clinical Neuropathology, vol. 15, no. 6, pp. 348–352, 1996.
[9]  D. K. Simon, R. Mayeux, K. Marder, N. W. Kowall, M. F. Beal, and D. R. Johns, “Mitochondrial DNA mutations in complex I and tRNA genes in Parkinson's disease,” Neurology, vol. 54, no. 3, pp. 703–709, 2000.
[10]  M. Tanaka, N. Fuku, T. Takeyasu et al., “Golden mean to longevity: rareness of mitochondrial cytochrome b variants in centenarians but not in patients with Parkinson's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 347–355, 2002.
[11]  T. M. Dawson and V. L. Dawson, “Molecular pathways of neurodegeneration in Parkinson's disease,” Science, vol. 302, no. 5646, pp. 819–822, 2003.
[12]  O. A. Ross, R. McCormack, L. D. Maxwell et al., “mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson's disease in the Irish,” Experimental Gerontology, vol. 38, no. 4, pp. 397–405, 2003.
[13]  J. W. Lustbader, M. Cirilli, C. Lin et al., “ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease,” Science, vol. 304, no. 5669, pp. 448–452, 2004.
[14]  A. K. Niemi, J. S. Moilanen, M. Tanaka et al., “A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects,” European Journal of Human Genetics, vol. 13, no. 2, pp. 166–170, 2005.
[15]  G. Alexe, N. Fuku, E. Bilal et al., “Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population,” Human Genetics, vol. 121, no. 3-4, pp. 347–356, 2007.
[16]  N. Fuku, K. S. Park, Y. Yamada et al., “Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians,” American Journal of Human Genetics, vol. 80, no. 3, pp. 407–415, 2007.
[17]  P. F. Chinnery, C. Mowbray, S. K. Patel et al., “Mitochondrial DNA haplogroups and type 2 diabetes: a study of 897 cases and 1010 controls,” Journal of Medical Genetics, vol. 44, no. 6, article e80, 2007.
[18]  W. Kim, T. K. Yoo, D. J. Shin et al., “Mitochondrial DNA haplogroup analysis reveals no association between the common genetic lineages and prostate cancer in the Korean population,” PLoS ONE, vol. 3, no. 5, Article ID e2211, 2008.
[19]  A. Maruszak, J. A. Canter, M. Styczyńska, C. Zekanowski, and M. Barcikowska, “Mitochondrial haplogroup H and Alzheimer's disease—is there a connection?” Neurobiology of Aging, vol. 30, no. 11, pp. 1749–1755, 2009.
[20]  J. Feder, I. Blech, O. Ovadia et al., “Differences in mtDNA haplogroup distribution among 3 Jewish populations alter susceptibility to T2DM complications,” BMC Genomics, vol. 9, article 198, 2008.
[21]  T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.
[22]  C. H. Wu and J. W. McLarty, Neural Networks and Genome Informatics, Elsevier Science, New York, NY, USA, 2000.
[23]  S. Takasaki, “Mitochondrial haplogroups associated with Japanese centenarians, Alzheimer's patients, Parkinson's patients, type 2 diabetic patients and healthy non-obese young males,” Journal of Genetics and Genomics, vol. 36, no. 7, pp. 425–434, 2009.
[24]  R. Saxena, P. I. W. de Bakker, K. Singer et al., “Comprehensive association testing of common mitochondrial DNA variation in metabolic disease,” American Journal of Human Genetics, vol. 79, no. 1, pp. 54–61, 2006.
[25]  E. Bilal, R. Rabadan, G. Alexe et al., “Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan,” PLoS ONE, vol. 3, no. 6, Article ID e2421, 2008.
[26]  M. Tanaka, V. M. Cabrera, A. M. González et al., “Mitochondrial genome variation in Eastern Asia and the peopling of Japan,” Genome Research, vol. 14, no. 10, pp. 1832–1850, 2004.
[27]  C. Herrnstadt, J. L. Elson, E. Fahy et al., “Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups,” American Journal of Human Genetics, vol. 70, no. 5, pp. 1152–1171, 2002.
[28]  Q. P. Kong, Y. G. Yao, C. Sun, H. J. Bandelt, C. L. Zhu, and Y. P. Zhang, “Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences,” American Journal of Human Genetics, vol. 73, no. 3, pp. 671–676, 2003.
[29]  S. Takasaki, Y. Kawamura, and A. Konagaya, “Selecting effective siRNA sequences by using radial basis function network and decision tree learning,” BMC Bioinformatics, vol. 7, supplement 5, p. S22, 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133