全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

DOI: 10.1155/2012/981758

Full-Text   Cite this paper   Add to My Lib

Abstract:

Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) reacts with iron(II) and cobalt(II) to form reddish-brown and yellow-coloured [Fe(II)-HNAHBH] and [Co(II)-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405?nm and 425?nm, respectively. For [Fe(II)-HNAHBH], Beer’s law is obeyed over the concentration range of 0.055–1.373?μg?mL?1 with a detection limit of 0.095?μg?mL?1 and molar absorptivity ?, 5.6 × 104?L mol?1 cm?1. [Co(II)-HNAHBH] complex obeys Beer’s law in 0.118–3.534?μg?mL?1 range with a detection limit of 0.04?μg?mL?1 and molar absorptivity, ? of 2.3 × 104?L mol?1 cm?1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content. 1. Introduction Iron and cobalt salts are widely used in industrial materials [1, 2], paint products [3], fertilizers, feeds, and disinfectants. They are important building components in biological systems [4]. Special cobalt-chromium-molybdenum alloys are used for prosthetic parts such as hip and knee replacements [5]. Iron-cobalt alloys are used for dental prosthetics [6]. There has been growing concern about the role of iron and cobalt in biochemical and environmental systems. Normally small amounts of iron and cobalt are essential for oxygen transport and enzymatic activation, respectively, in all mammals. But excessive intake of iron causes siderosis and damage to organs [7]. A high dosage of cobalt is very toxic to plants and moderately toxic to mammals when injected intravenously. Hence, quantification of various biological samples for iron and cobalt is very important to know their influence on these systems. A good number of reviews have been made on the use of large number of chromogenic reagents for the spectrophotometric determination of iron and cobalt. Some of the recently proposed spectrophotometric methods for the determination of iron [8–15] and cobalt [16–22] are less sensitive and less selective. We are now proposing simple, sensitive and selective direct and derivative spectrophotometric methods for the determination of iron(II) and cobalt(II) in various

References

[1]  E. Wildermuth, H. Stark, G. Friedrich, et al., “Iron compounds,” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000.
[2]  F. C. Campbell, “Cobalt and cobalt alloys,” in Elements of Metallurgy and Engineering Alloys, pp. 557–558, ASM International, 2008.
[3]  M. L. C. Adolfsson, A. K. Saloranta, and M. K. Silander, “Colourant composition for paint products,” US Patent, Patent number: 5985987, 1999.
[4]  M. W. Hentze and L. C. Kühn, “Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8175–8182, 1996.
[5]  R. Michel, M. Nolte, M. Reich, and F. Loer, “Systemic effects of implanted prostheses made of cobalt-chromium alloys,” Archives of Orthopaedic and Trauma Surgery, vol. 110, no. 2, pp. 61–74, 1991.
[6]  J. A. Disegi, R. L. Kennedy, and R. Pillia, Cobalt-Base Alloys for Biomedical Applications, ASTM International Standards, 1999.
[7]  J. T. Ellis, I. Schulman, and C. H. Smith, “Generalized siderosis with fibrosis of liver AND pancreas in cooley's (Mediterranean) anemia with observations on the pathogenesis of the siderosis AND fibrosis,” American Journal of Pathology, vol. 30, no. 2, pp. 287–309, 1954.
[8]  Wu, Li-Xiang, Guo, and J. Cun, Metallurgical Analysis, vol. 24, no. 3, pp. 66–68, 2004.
[9]  L. Zaijun, F. You, L. Zhongyun, and T. Jian, “Spectrophotometric determination of iron(III)-dimethyldithiocarbamate (ferbam) using 9-(4-carboxyphenyl)-2,3,7-trihydroxyl-6-fluorone,” Talanta, vol. 63, no. 3, pp. 647–651, 2004.
[10]  Qi-Kai Zhang, Ling-Zhao Kong, and Li Wang, “Spectrophotometric determination of micro amount of iron in oils with thiocyanate-phenanthroline-OP,” Fenxi Shiyanshi (Analytical Laboratory), vol. 24, no. 1, pp. 77–79, 2005.
[11]  P. K. Tarafder and R. Thakur, “Surfactant-mediated extraction of iron and its spectrophotometric determination in rocks, minerals, soils, stream sediments and water samples,” Microchemical Journal, vol. 80, no. 1, pp. 39–43, 2005.
[12]  F. G. Martins, J. F. Andrade, A. C. Pimenta, L. M. Lourenco, J. R. M. Casto, and V. R. Balbo, “Spectrophotometric study of iron oxidation in the iron(II)/thiocyanate/acetone system and some analytical applications,” Eclética Química, vol. 30, no. 3, pp. 63–71, 2005.
[13]  A. K. Sharma and I. Singh, “Spectrophotometric trace determination of iron in food, milk, and tea samples using a new bis-azo dye as analytical reagent,” Food Analytical Methods, vol. 2, no. 3, pp. 221–225, 2009.
[14]  L. I. Cheng-hong, G. E. Chang-hua, L. Hua-ding, and P. Fu-you, “Spectrophotometric determination of iron with 2-(5-carboxy-1,3,4-triazolylazo)-5-diethylamino aniline,” Science Technology and Engineering, vol. 21, pp. 5780–5782, 2008.
[15]  Q. Z. Zhai, “Catalytic kinetic spectrophotometric determination of trace copper with copper(II)-p-acetylchlorophosphonazo-hydrogen peroxide system,” Bulletin of the Chemical Society of Ethiopia, vol. 23, no. 3, pp. 327–335, 2009.
[16]  A. K. Malik, K. N. Kaul, B. S. Lark, W. Faubel, and A. L. J. Rao, “Spectrophotometric determination of cobalt, nickel palladium, copper, ruthenium and molybdenum using sodium isoamylxanthate in presence of surfactants,” Turkish Journal of Chemistry, vol. 25, no. 1, pp. 99–105, 2001.
[17]  B. R. Reddy, P. Radhika, J. R. Kumar, D. N. Priya, and K. Rajgopal, “Extractive spectrophotometric determination of cobalt(II) in synthetic and pharmaceutical samples using cyanex 923,” Analytical Sciences, vol. 20, no. 2, pp. 345–349, 2004.
[18]  G. A. Shar and G. A. Soomro, “Spectrophotometric determination of cobalt(II), nickel(II) and copper (II) with 1-(2 pyridylazo)-2-naphthol in micellar medium,” The Nucleus, vol. 41, pp. 77–82, 2004.
[19]  N. Veerachalee, P. Taweema, and A. Songsasen, “Complexation and spectrophotometric determination of cobalt(II) ion with 3-(2′-thiazolylazo)-2,6-diaminopyridine,” Kasetsart Journal—Natural Science, vol. 41, no. 4, pp. 675–680, 2007.
[20]  Y. Haoyi, Z. Guoxiu, and Y. Gaohua, “Determination of cobalt in terephthalic acid by picramazochrom spectrophotometry,” Chemical Analysis and Meterage, vol. 1, 2009.
[21]  S. H. Guzar and Q. H. Jin, “Simple, selective, and sensitive spectrophotometric method for determination of trace amounts of nickel(II), copper (II), cobalt (II), and iron (III) with a novel reagent 2-pyridine carboxaldehyde isonicotinyl hydrazone,” Chemical Research in Chinese Universities, vol. 24, no. 2, pp. 143–147, 2008.
[22]  S. G. Prabhulkar and R. M. Patil, “2-Hydroxy-1-naphthalidine salicylohydrazone as an analytical reagent for extractive spectrophotometric determination of a biologically and industrially important metal Cobalt(II),” International Journal of Chemical Sciences, vol. 6, no. 3, pp. 1480–1485, 2008.
[23]  J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry, Harper Collins, New York, NY, USA, 4th edition, 1993.
[24]  T. Katami, T. Hayakawa, M. Furukawa, and S. Shibata, “Extraction—spectrophotometric determination of iron with 2-[2-(3,5-Dibromopyridyl)azo]-5-dimethylaminobenzoic acid,” The Analyst, vol. 109, no. 2, pp. 159–162, 1984.
[25]  A. Morales and M. I. Toral, “Extraction—spectrophotometric determination of iron as the ternary tris(1,10-phenanthroline)-iron(II)-picrate complex,” The Analyst, vol. 110, no. 12, pp. 1445–1449, 1985.
[26]  M. R. P. Reddy, P. V. S. Kumar, J. P. Shyamsundar, and J. S. Anjaneyulu, “Extractive spectrophotometric method for the determination of iron in titanium base alloys using 4- (2-Pyridylazo) resorcinol and a long chain quaternary ammonium salt,” Journal of the Indian Chemical Society, vol. 66, pp. 437–439, 1989.
[27]  A. K. Malik and A. L. J. Rao, “Spectrophotometric determination of iron(III) dimethyldithiocarbamate (ferbam),” Talanta, vol. 44, no. 2, pp. 177–183, 1997.
[28]  R. K. Patil and D. G. Dhuley, “Solvent extraction and spectrophotometric determination of Fe(II) with 1,3-diphenyl-4-carboethoxy pyrazole-5-one,” Indian Journal of Chemistry, vol. 39, no. 10, pp. 1105–1106, 2000.
[29]  B. M. Nagabhushana, G. T. Chandrappa, B. Nagappa, and N. H. Nagaraj, “Diformylhydrazine as analytical reagent for spectrophotometric determination of iron(II) and iron(III),” Analytical and Bioanalytical Chemistry, vol. 373, no. 4-5, pp. 299–303, 2002.
[30]  L. M. Wang, C. Song, and J. Jin, “Spectrophotometric determination of iron by extraction of its ternary complex with 4,7-diphenyl-1,10-phenanthroline and tetraphenylborate into molten naphthalene,” Fenxi Shiyanshi (Analytical Laboratory), vol. 23, no. 9, pp. 48–50, 2004.
[31]  F. G. Martins, J. F. Andrade, A. C. Pimenta, L. M. Lourenco, J. R. M. Casto, and V. R. Balbo, “Spectrophotometric study of iron oxidation in the iron(II) thiocyanateacetone system and some analytical application,” Electica Quimica, vol. 30, no. 3, pp. 63–71, 2005.
[32]  S. S. Patil and A. D. Sawant, “Pyridine-2-acetaldehyde salicyloylhydrazone as reagent for extractive and spectrophotometric determination of cobalt(II) at trace level,” Indian Journal of Chemical Technology, vol. 8, no. 2, pp. 88–91, 2001.
[33]  S. Adinarayana Reddy, K. Janardhan Reddy, S. Lakshmi Narayana, Y. Sarala, and A. Varada Reddy, “Synthesis of new reagent 2,6-diacetylpyridine bis-4-phenyl-3- thiosemicarbazone (2,6-DAPBPTSC): Selective, sensitive and extractive spectrophotometric determination of Co(II) in vegetable, soil, pharmaceutical and alloy samples,” Journal of the Chinese Chemical Society, vol. 55, no. 2, pp. 326–334, 2008.
[34]  Q. Qiufen, G. Yang, X. Dong, and J. Yin, “Study on the solid phase extraction and spectrophotometric determination of cobalt with 2-(2-quinolylazo)-5-diethylaminoaniline,” Turkish Journal of Chemistry, vol. 28, no. 5, pp. 611–619, 2004.
[35]  A. P. Kumar, P. R. Reddy, and V. K. Reddy, “Direct and derivative spectrophotometric determination of cobalt (II) in microgram quantities with 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone,” Journal of the Korean Chemical Society, vol. 51, no. 4, pp. 331–338, 2007.
[36]  F. G. Martins, J. F. Andrade, A. C. Pimenta, L. M. Louren?o, J. R. M. Castro, and V. R. Balbo, “Spectrophotometric study of iron oxidation in the iron(II)/thiocyanate/ acetone system and some analytical applications,” Ecletica Quimica, vol. 30, no. 3, pp. 63–71, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133