全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于绕射理论的大尺度桥墩波浪力计算方法
Research of Calculation Method for Wave Forces Acting on Large-Scale Bridge Piers Based on Diffraction Theory

DOI: 10.3969/j.issn.0258-2724.2018.02.007

Keywords: Morison方程,绕射理论,波浪力,流固耦合,
Morison equation
,diffraction theory,wave forces,fluid-structure interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

为拓展MacCamy绕射理论在大尺度桥墩波浪力计算方面的适用性,采用数值与解析相结合的方法对大尺度桥墩波浪力的计算模式进行了研究.首先基于数值方法研究了波浪作用下截面尺寸及截面形状对桥墩惯性力系数的影响;然后引入绕射系数对Morison方程进行修正,提出了能够适用于大尺度结构物波浪力计算的修正Morison方程.研究结果表明:相比圆截面桥墩而言,方形截面桥墩的惯性力系数值下降更快,大尺度效应更加明显;通过引入绕射系数修正后的Morison方程用于计算大尺度圆形桥墩波浪力后与数值解更接近;纵向尺寸取0.2倍波长时能较好的计算大尺度方型桥墩波浪力.
:In order to make the MacCamy diffraction theory applicable to calculate the wave forces on large-scale bridge piers, a calculation method was analytically and numerically investigated. First, the effects of the cross-section dimension and cross-section shape on the bridge pier inertial force coefficients were numerically examined. Then, the diffraction coefficient was introduced into the Morison equation, making the classical Morison applicable to calculate the wave forces on large-scale structures. The results show that the initial force coefficient of the square cross-section pier decreases faster, and the large-scale effects are more obvious in square cross-section piers than in the circular cross-section piers. The analytical solutions obtained from the Morison equation with a diffraction coefficient are very close to the numerical solutions. When the longitudinal wavelength is 0.2 times the wavelength, the wave forces on the large-scale square piers calculated from the modified Morison equation agree well with the numerical results

References

[1]  中华人民共和国交通运输部.JTS 145-2-2013海港水文规范[S]. 北京:人民交通出版社,2013.
[2]  兰雅梅,刘桦,皇甫熹,等. 东海大桥桥梁桩柱承台水动力模型试验研究——第二部分:作用于群桩及承台上的波流力[J]. 水动力学研究与进展:A辑,2005,20(3):332-339.
[3]  郭超. 桥墩冲刷与波流力的试验研究[D]. 北京:清华大学,2012.
[4]  吴启和,牛照,田唯,等. 港珠澳大桥埋置承台与桩波流作用动力响应分析与试验研究[J]. 中外公路,2014,34(1):121-124.
[5]  邱大洪. 波浪理论及其在工程中的应用[M]. 北京:高等教育出版社,1985:5-8.
[6]  邱大洪,王永学. 大直径圆柱体的非线性波浪力[J]. 海洋学报,1986,8(4):496-509.
[7]  王树青,梁丙臣. 海洋工程波浪力学[M]. 中国海洋大学出版社,2013:175-182.
[8]  李世森,张伟,秦崇仁. 大直径圆筒结构上波浪力的数值模拟与实验研究[J]. 中国港湾建设,2003,2(2):11-16. LI Shisen, ZHANG Wei, QIN Chongren. Numerical simulation and experimental study of wave force on large diameter cylindrical structure[J]. China Harbour Engineering, 2003, 2(2):11-16.
[9]  FALTINSEN O M. Sea Loads on Ships and Offshore Structures[M]. Cambridge University Press, 1990:118-122
[10]  李玉成,滕斌. 波浪对海上建筑物的作用[M]. 海洋出版社,2002:278-284.
[11]  康啊真,祝兵,邢帆,等. 超大型结构物受波浪力作用的数值模拟[J]. 工程力学,2014,31(8):108-115.
[12]  Department of the Army Corps of Engineers. Coastal engineering manual[M].[S.l.]:US Army Corps of Engineers, 2002:84-88.
[13]  British Standard Institution. 6349-12000 Maritime structures part 1:code of practice for general criteria[S].[S.l.]:Civil Engineering and Building Stuctures Sector Committee, 2000.
[14]  刘浪,杨万理,李乔. 深水桥梁墩水耦合抗震分析方法[J]. 西南交通大学学报,2015,50(3):449-453. LIU Lang, YANG Wanli, LI Qiao. Seismic analysis method of deep-water bridge pier and water coupling[J]. Journal of Southwest Jiaotong University, 2015, 50(3):449-453.
[15]  鲁丽,杨翊仁. 流体和结构参数对板-流体耦合振动的影响[J]. 西南交通大学学报,2009,44(3):370-374. LU Li, YANG Yiren. Influences of fluid and structural parameters on flow-induced vibrations of plate-fluid structure[J]. Journal of Southwest Jiaotong University, 2009, 44(3):370-374.
[16]  滕斌. 波浪力计算中的一个新边界元方法[J]. 水动力学研究与进展:A辑,1994(2):215-223.
[17]  田宏升. 固定式海洋结构物荷载分析与研究[D]. 辽宁大连:大连理工大学,2005.
[18]  ANSYS I N C. CFX-Solver theory guide[M]. Canonsburg:[s.n.], 2009:112-127.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413