全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

生物炭对生物滞留池水文效果的影响
Effects of Biochar on Hydrologic Performance of Bioretention

DOI: 10.3969/j.issn.0258-2724.2018.02.028

Keywords: 生物炭,生物滞留池,城市雨水径流,导水率,水力停留时间,持水性,
biochar
,bioretention,urban runoff,hydraulic conductivity,hydraulic retention time,water retention

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究生物炭的添加对生物滞留池雨水下渗、持水能力及水力停留时间的影响,在一野外中试生物滞留池中加入了4%(w/w)的生物炭,对该生物滞留池进行了导水率测试和3次溴示踪模拟降雨实验.研究结果表明:与无生物炭的对照组相比,生物炭的施用将填料土的饱和导水率增大了1.5倍;生物滞留池的水力停留时间延长了近1 h;渗流区的体积含水量增加了11%~23%;施用生物炭可全面提高生物滞留池的水力表现,避免溢流,削减洪峰,增加保水,减少雨水径流的排放.
:A pilot-scale bioretention system with 4% (w/w) biochar amendment was installed to evaluate the impact of the biochar on the bioretention in the aspects of runoff infiltration, water retention and hydraulic residence time. Hydraulic conductivity tests and three bromide tracer experiments were conducted in the pilot-scale bioretention system. Results show thatcompared to the control group, the saturated hydraulic conductivity of filter medium with the biochar amendment increased by 1.5 times, the hydraulic retention time of the bioretention increased by nearly 1 h, and the volumetric water content of vadose zone increased by 11%-23%. Using the biochar can improve the hydraulic performance of the bioretention, avoid overflow, mitigate peak flow, increase water retention and reduce the discharge of runoff

References

[1]  CHEN X, CHEN G, CHEN L, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresour Technol, 2011, 102(19):8877-8884.
[2]  SIMUNEK J, GENUCHTEN M T V. The DISC computer software for analyzing tension disc infiltrometer data by parameter estimation[M]. Riverside:U.S.Salinity Laboratory, 2000:1-4.
[3]  YANG H, DICK W A, MCCOY E L, et al. Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal[J]. Ecological Engineering, 2013, 54:22-31.
[4]  BECK D A, JOHNSON G R, SPOLEK G A. Amending greenroof soil with biochar to affect runoff water quantity and quality[J]. Environ Pollut, 2011, 159(8/9):2111-2118.
[5]  HUNT W F, DAVIS A P, TRAVER R G. Meeting hydrologic and water quality goals through targeted bioretention design[J]. Journal of Environmental Engineering, 2012, 138(6):698-707.
[6]  LEHMANN J, JOSEPH S. Biochar for environmental management:an introduction, biochar for environmental management, science and technology[M]. London:Earthscan, 2009:1-12.
[7]  CHENG C H, LEHMANN J, ENGELHARD M H. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72(6):1598-1610.
[8]  CAO X, MA L, LIANG Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environ Sci Technol, 2011, 45(11):4884-4889.
[9]  TIAN J, YI S, IMHOFF P T, et al. Biochar-amended media for enhanced nutrient removal in stormwater facilities[C]//World Environmental and Water Resources Congress 2014:Water without Borders. Portland:American Society of Civil Engineers, 2014:197-208.
[10]  LUCAS W, GREENWAY M. Hydraulic response and nitrogen retention in bioretention mesocosms with regulated outlets:Part I, hydraulic response[J]. Water Environment Research, 2011, 83(2):692-702.
[11]  GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility of Soils, 2002, 35(4):219-230.
[12]  SPOKAS K A, NOVAK J M, VENTEREA R T. Biochar's role as an alternative N-fertilizer:ammonia capture[J]. Plant and Soil, 2011, 350(1/2):35-42.
[13]  DEMPSTER D N, JONES D L, MURPHY D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil[J]. Soil Research, 2012, 50(3):216-221.
[14]  KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8):339-344.
[15]  COUSTUMER L S, FLETCHER T D, Deletic A, et al. Hydraulic performance of biofilter systems for stormwater management:Influences of design and operation[J]. Journal of Hydrology, 2009, 376(1/2):16-23.
[16]  AHIABLAME L M, ENGEL B A, CHAUBEY I. Effectiveness of low impact development practices:literature review and suggestions for future research[J]. Water, Air, & Soil Pollution, 2012, 223(7):4253-4273.
[17]  DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology:overview of current practice and future needs[J]. Journal of Environmental Engineering-Asce, 2009, 135(3):109-117.
[18]  Delaware Department of Natural Resources and Environmental Control (DNREC). 3.06.2 Post construction stormwater BMP standards and specifications[EB/OL]. Dover, DE:DNREC, 2013[2018-01-11]. http://www.dnrec.delaware.gov/.
[19]  BREWER C E, CHUANG V J, MASIELLO C A, et al. New approaches to measuring biochar density and porosity[J]. Biomass and Bioenergy, 2014, 66:176-185.
[20]  LEHMANN J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7):381-387.
[21]  JIANG Y, SHAO M. Effects of soil structural properties on saturated hydraulic conductivity under different land-use types[J]. Soil Research, 2014, 52(4):340.
[22]  North Carolina Deparment of Environmental Quality (NCDWQ). Stormwater best management practices manual[EB/OL]. Raleigh, NC:NCDWQ, 2007[2018-01-11]. http://www.deq.nc.gov/.
[23]  Prince George's County Department of Environmental Resources (PGDER). Bioretention manual[EB/OL]. The Prince George's County, MD:PGDER, 2007[2018-01-11]. http://www.ct.gov/.
[24]  LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730.
[25]  NCDWQ. Stormwater best management practices manual[S]. Raleigh:N.C. Department of Environmental and Natural Resources, Divison of Water Quality, 2007.
[26]  HOLLISTER C C, BISOGNI J J, LEHMANN J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.)[J]. Journal of Environmental Quality, 2013, 42(1):137-144.
[27]  SARKHOT D V, GHEZZEHEI T A, BERHE A A. Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent[J]. Journal of Environmental Quality, 2013, 42(5):1545-1554.
[28]  BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environ Pollut, 2010, 158(6):2282-2287.
[29]  OUYANG L, WANG F, TANG J, et al. Effects of biochar amendment on soil aggregates and hydraulic properties[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(4):991-1002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413