全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于空间三维物体重构的光场显示技术综述
Survey on light-field displays based on 3D object reconstructions

DOI: 10.16511/j.cnki.qhdxxb.2018.22.044

Keywords: 光场显示,三维物体重构,聚焦辐辏,虚拟现实,
light field displays
,3D object reconstruction,focus-convergence,virtual reality

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前的三维显示技术,如视差屏障显示、柱镜光栅显示、多投影显示、扫描立体显示,通过运用双目视差、视觉暂留效应使人眼获得三维图像。这些显示技术将物体显示在二维平面上,并不是在空间中重构出三维物体,丢失了深度信息,易引起聚焦辐辏调节冲突。体三维显示和全息显示可以在空间中重构出三维物体,但所需处理的数据量巨大,目前在计算速度、传输速率等方面都有技术限制。基于空间三维物体重构的光场显示技术利用光场在空间中重构出三维物体,主要包括层叠光场显示、快门光场显示、集成成像光场显示和矢量光场显示。该文分析了各种光场显示技术的原理和特点,认为矢量光场显示技术具有广阔的发展前景。
Abstract:Present 3D displays, such as parallax barrier displays, lenticular lens displays, multi-projection displays, and scanning stereoscopic displays, mimic human eyes to obtain 3D images using binocular parallax and persistence of vision. However, locating the 3D images on 2D planes instead of reconstructing the 3D object losses the depth information and causes the vergence-accommodation conflict. 3D objects can be reconstructed using volumetric and holographic displays. However, these require processing of a large amount of data so there are technical limitations due to computing speeds and transmission rates. This paper introduces light-field displays based on 3D object reconstructions. The 3D object is reconstructed using the light field, such as the stacked light field display, shutter light field display, integrated imaging display, or vector light field display. The principles and characteristics of the light field displays are analyzed with the vector light field display having excellent prospects for future development.

References

[1]  CHUN W S, NAPOLI J, COSSAIRT O S, et al. Spatial 3-D infrastructure:Display-independent software framework, high-speed rendering electronics, and several new displays[J]. Proceedings of SPIE, 2005, 5664:302-312.
[2]  KLUG M, BURNETT T, FANCELLO A, et al. 32.4:A scalable, collaborative, interactive light-field display system[J]. SID, 2013, 44(1):412-415.
[3]  KOZACKI T. On resolution and viewing of holographic image generated by 3D holographic display[J]. Optics Express, 2010, 18(26):27118-27129.
[4]  ROSEN J, KATZ B, BROOKER G. Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms[J]. 3D Research, 2010, 1(1):28-35.
[5]  丁俊. 基于多层液晶的近眼三维显示研究[D]. 杭州:浙江大学, 2016. DING J. The research of near-eye 3D displays based on multi-layer LCDs[D]. Hangzhou, China:Zhejiang University, 2016. (in Chinese)
[6]  SUN D E, WANG C X, TENG D D, et al. Three-dimensional display on computer screen free from accommodation-convergence conflict[J]. Optics Communications, 2017, 390:36-40.
[7]  SHIN D H, KIM E S, LEE B. Computational reconstruction of three-dimensional objects in integral imaging using lenslet array[J]. Japanese Journal of Applied Physics, 2005, 44(11):7735-8259.
[8]  YU X B, SANG X Z, GAO X, et al. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues[J]. Optics Express, 2015, 23(20):25950-25958.
[9]  KIM Y, CHOI H, KIM J, et al. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers[J]. Applied Optics, 2007, 46(18):3766-3773.
[10]  FATTAL D, PENG Z, TRAN T, et al. A multi-directional backlight for a wide-angle, glasses-free 3D display[C]//Proceedings of 2013 IEEE Photonics Conference. Bellevue, USA, 2013:24-25.
[11]  EL-GHOROURY H S, CHUANG C L, ALPASLAN Z Y. 26.1:Invited paper:Quantum photonic imager (QPI):A novel display technology that enables more than 3D applications[J]. SID, 2015, 46(1):371-374.
[12]  ALPASLAN Z Y, EI-GHOROURY H S. Small form factor full parallax tiled light field display[J]. Proceedings of the SPIE, 2015, 9391:93910E-1-93910E-10.
[13]  LIN D, MELLI M, POLIAKOV E, et al. Optical metasurfaces for high angle steering at visible wavelengths[J]. Scientific Reports, 2017, 7:2286.
[14]  KIM J, KANE D, BANKS M S. The rate of change of vergence-accommodation conflict affects visual discomfort[J]. Vision Research, 2014, 105:159-165.
[15]  YU X B, SANG X Z, XING S J, et al. Natural three-dimensional display with smooth motion parallax using active partially pixelated masks[J]. Optics Communications, 2014, 313:146-151.
[16]  夏振平, 李晓华, 陈磊, 等. 基于双目视差的立体显示运动模糊评价方法研究[J]. 光学学报, 2015, 35(1):145-151. XIA Z P, LI X H, CHEN L, et al. Study on evaluation of motion blur in binocular parallax based stereoscopic displays[J]. Acta Optica Sinica, 2015, 35(1):145-151. (in Chinese)
[17]  VAN BERKEL C, CLARKE J A. Characterization and optimization of 3D-LCD module design[J]. Proceedings of the SPIE, 1997, 3012:179-186.
[18]  MATUSIK W, PFISTER H. 3D TV:A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes[J]. ACM Transactions on Graphics, 2004, 23(3):814-824.
[19]  NAGO N, SHINOZAKI Y, TAKAKI Y. SMV256:Super multiview display with 256 viewpoints using multiple projections of lenticular displays[J]. Proceedings of SPIE, 2010, 7524(1):75241S-1.
[20]  UCHIDA S, TAKAKI Y. 360-Degree three-dimensional table-screen display using small array of high-speed projectors[J]. Proceedings of SPIE, 2012, 8288:82880D.
[21]  YENDO T, FUJⅡ T, TANIMOTO M, et al. The Seelinder:Cylindrical 3D display viewable from 360 degrees[J]. Journal of Visual Communication and Image Representation, 2010, 21(5-6):586-594.
[22]  YOSHIDA H, MAEDA T, SHIBATA S. Three dimensional video display device:WO, US9047793. 2015.
[23]  XIA X, LIU X, LI H, et al. A 360-degree floating 3D display based on light field regeneration[J]. Optics Express, 2013, 21(9):11237-11247.
[24]  SULLIVAN A. DepthCube solid-state 3D volumetric display[J]. Proceedings of SPIE, 2004, 5291(1):279-284.
[25]  WETZSTEIN G, LANMAN D, HEIDRICH W, et al. Layered 3D:Tomographic image synthesis for attenuation-based light field and high dynamic range displays[J]. ACM Transactions on Graphics, 2011, 30(4):1-12.
[26]  TENG D D, LIU L L. P-95:Full resolution 3D display on computer screen free from accommodation-convergence conflict[J]. SID, 2017, 48(1):1607-1609.
[27]  ADELSON E H, BERGEN J R. The plenoptic function and the elements of early vision[M]//LANDY M, MOVSHON J A, eds. Computational models of visual processing. Cambridge, USA:MIT Press, 1991:3-20.
[28]  LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA, 1996:31-42.
[29]  LANMAN D, WETZSTEIN G, HIRSCH M, et al. Polarization fields:Dynamic light field display using multi-layer LCDs[J]. ACM Transactions on Graphics, 2011, 30(6):1-10.
[30]  CHEN D, SANG X Z, YU X B, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution[J]. Optics Express, 2016, 24(26):29781-29793.
[31]  HUANG F C, CHEN K, WETZSTEIN G. The light field stereoscope:Immersive computer graphics via factored near-eye light field displays with focus cues[J]. ACM Transactions on Graphics, 2015, 34(4):60.
[32]  LEE B, PARK J H, MIN S W. Three-dimensional display and information processing based on integral imaging[M]//POON T C, ed. Digital holography and three-dimensional display. Boston, USA:Springer, 2006:333-378.
[33]  KIM Y, PARK J H, MIN S W, et al. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array[J]. Applied Optics, 2005, 44(4):546-552.
[34]  SHIN D H, LEE B, KIM E S. Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens[J]. Applied Optics, 2006, 45(28):7375-7381.
[35]  SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays:Effects of viewing distance and direction of vergence-accommodation conflict[J]. Proceedings of SPIE, 2011, 7863:78630P-1-78630P-9.
[36]  KIM J, KANE D, BANKS M S. Visual discomfort and the temporal properties of the vergence-accommodation conflict[J]. Proceedings of SPIE, 2012, 8288:828811.
[37]  EL-GHOROURY H S, ALPASLAN Z Y. Quantum photonic imager (QPI):A new display technology and its applications[C]//Proceedings of the International Display Workshops. Niigata, Japan, 2014:1292-1295.
[38]  GERSHUN A. The light field[J]. Journal of Mathematics and Physics, 1939, 18(1-4):51-151.
[39]  KIM J, MIN S W, LEE B. Floated image mapping for integral floating display[J]. Optics Express, 2008, 16(12):8549-8556.
[40]  苏忱, 李海峰. 应用于混合现实的光场三维显示研究综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6):905-912. SU C, LI H F. Survey on light field 3D display applied to mixed reality[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6):905-912. (in Chinese)
[41]  HONG J, KIM Y, CHOI H J, et al. Three-dimensional display technologies of recent interest:Principles, status, and issues[J]. Applied Optics, 2011, 50(34):87-115.
[42]  GENG J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 2013, 5(4):456-535.
[43]  LIU L L, PANG Z Y, TENG D D. Super multi-view three-dimensional display technique for portable devices[J]. Optics Express, 2016, 24(5):4421-4430.
[44]  LIPPMANN G. épreuves réversibles donnant la sensation du relief[J]. Journal De Physique Théorique et Appliquée, 1908, 7(1):821-825.
[45]  PARK G, HONG J, KIM Y, et al. Enhancement of viewing angle and viewing distance in integral imaging by head tracking[C]//Digital Holography and Three-Dimensional Imaging 2009. Vancouver, Canada, 2009:DWB27.
[46]  LALANNE P, CHAVEL P. Metalenses at visible wavelengths:Past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3):1600295.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133