全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于双PSD的三维测量系统的标定方法
Calibration of 3-D measurement system based on a double position sensitive detectors

DOI: 10.16511/j.cnki.qhdxxb.2018.26.023

Keywords: 三维测量,光敏位置探测器,Faugeras标定方法,LM(Levenberg-Marquardt)优化,BP(back propagation)神经网络,
3-D measurement
,position sensitive detector,Faugeras calibration,Levenberg-Marquardt arithmetic optimization,back propagation neural networks

Full-Text   Cite this paper   Add to My Lib

Abstract:

双目视觉已在机器人视觉、三维测量等多个领域得到广泛应用。但是,随着研究的不断深入,双目视觉的局限性也逐渐突显出来。例如测量复杂形面的三维形貌精度低,计算速度慢等。基于此,该文提出一种基于双光敏位置探测器(position sensitive detector,PSD)的三维测量方法。利用2个PSD从不同的角度捕获、跟踪激光点的方式来还原工件的三维信息,省去了传统双目视觉中的特征点识别和匹配部分,极大简化了三维测量模型。由于传统的标定方法不再适用,该文提出2种标定方案,改进的Faugeras标定加LM(Levenberg-Marquardt)优化方法和BP(back propagation)神经网络方法。通过对比实验分析,改进的Faugeras标定加LM优化的方法能达到更高更稳定的三维测量精度。
Abstract:Binocular vision systems have been widely used in many areas. Traditional calibration methods for binocular vision systems commonly use many complicated mathematical models, which result in low precision and speed. This paper presents a fast measurement method based on double position sensitive detectors (PSDs). Two detectors are aimed from different angles to detect the position of the laser point for the 3D measurement. The 3-D measurement is greately simplified by replacing a charge coupled device (CCD) with a PSD. Since this method is fundamentally different from traditional methods, the normal calibration methods are no longer applicable. Thus, this article presents two calibration methods respectively using an improved Faugeras calibration combined with Levenberg-Marquardt (LM) arithmetic optimization and a back propagation (BP) neural network. Tests show that the LM optimization gives better accuracy and stability.

References

[1]  阳军连. 基于双目视觉三维测量技术的研究与应用[D]. 大连:大连理工大学, 2014. YANG J L. Research and application of three-dimensional measurement based on binocular stereo vision[D]. Dalian:Dalian University of Science and Technology, 2014. (in Chinese)
[2]  戴宗贤.基于双目视觉的三维重建与测量技术研究[D]. 重庆:重庆大学, 2014. DAI Z X. Research 3-D reconstruction and measurement techniques based on binocular vision[D]. Chongqing:Chongqing University, 2014. (in Chinese)
[3]  杜宇. 三维重建中双目立体视觉关键技术的研究[D]. 哈尔滨:哈尔滨理工大学, 2014. DU Y. Research on key technology of binocular stereo vision in three-dimensional reconstruction[D]. Harbin:Harbin University of Science and Technology, 2014. (in Chinese)
[4]  王文韬. 基于双PSD的运动目标轨迹跟踪测量系统研究[D]. 大连:大连理工大学, 2015. WANG W T. Research on double PSDs-based measurement system of trajectory tracking of a moving target[D]. Dalian:Dalian University of Technology, 2015. (in Chinese)
[5]  卢晓红, 王文韬, 司立坤,等. 基于双PSD的机械手运动轨迹跟踪测量装置[J]. 制造技术与机床, 2015(6):61-66. LU X H, WANG W T, SI L K, et al. The double PSD-based measuring instrument to realize the trajectory tracking measurement of manipulator[J]. Manufacturing Technology and Machine Tool, 2015(6):61-66. (in Chinese)
[6]  莫伟. 基于PSD的高速激光距离传感器的信号检测与处理[D]. 武汉:华中科技大学, 2008. MO W. Signal detection and process of high-speed laser distance sensor based on PSD[D]. Wuhan:Huazhong University of Science and Technology, 2008. (in Chinese)
[7]  刘金颂, 原思聪, 张庆阳,等. 双目立体视觉中的摄像机标定技术研究[J]. 计算机工程与应用, 2008, 44(6):237-239. LIU J S, YUAN S C, ZHANG Q Y, et al. Research on camera calibration in binocular stereo vision[J]. Computer Engineering and Applications, 2008, 44(6):237-239. (in Chinese)
[8]  丁锋. 系统辨识新论[M]. 北京:科学出版社, 2013. DING F. New theory of system identification[M]. Beijing:Science Press, 2013. (in Chinese)
[9]  马源. 基于双目立体视觉的深度感知技术研究[D]. 北京:北京理工大学, 2015. MA Y. Research on depth perception based on the binocular stereo vision[D]. Beijing:Beijing Institute of Technology, 2015. (in Chinese)
[10]  宋庆, 王红平, 柳长青. 双PSD实现长直导轨四自由度测量的新方法[J]. 工具技术, 2014, 48(3):86-89. SONG Q, WANG H P, LIU C Q. New method based on PSD to measure four degree of freedom of long linear guide rails[J]. Tool Engineering, 2014, 48(3):86-89. (in Chinese)
[11]  徐德, 谭民, 李原. 机器人视觉测量与控制:3版[M]. 北京:国防工业出版社, 2016. XU D, TAN M, LI Y. Visual measurement and control for robots:3rd ed.[M]. Beijing:National Defense Industry Press. 2016. (in Chinese)
[12]  华希俊, 李永超, 王木菊, 等. 基于BP神经网络的摄像机标定方法研究[J]. 机械设计与制造, 2010(11):51-53. HUA X J, LI Y C, WANG M J, et al. Research of camera calibration based on BP neural network[J]. Machinery Design and Manufacture, 2010(11):51-53. (in Chinese)
[13]  赵弘, 周瑞祥, 林廷圻. 基于Levenberg-Marquardt算法的神经网络监督控制[J]. 西安交通大学学报, 2002, 36(5):523-527. ZHAO H, ZHOU R X, LIN T Q. Neural network supervised control based on Levenberg-Marquardt algorithm[J]. Journal of Xi'an Jiaotong University, 2002, 36(5):523-527. (in Chinese)
[14]  FUNAHASHI K I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, 2(3):183-192.
[15]  崔彦平, 林玉池, 张晓玲. 基于神经网络的双目视觉摄像机标定方法的研究[J]. 光电子·激光, 2005, 16(9):1097-1100. CUI Y P, LIN Y C, ZHANG X L. Study on camera calibration for binocular vision based on neural network[J]. Journal of Optoelectronics·Laser, 2005, 16(9):1097-1100. (in Chinese)

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133