|
- 2018
Mg2Si基热电材料的性能优化研究及其进展
|
Abstract:
Mg2Si基半导体是重要的中温热电材料,具有原料丰富、价格低、无毒等优点;其载流子有效质量和迁移率均较高,有望获得优异的电性能,近年来倍受关注。该文综述了Mg2Si基材料的研究进展,重点探讨了提高其热电性能的措施,对比了不同制备方法的优缺点,最后指出了今后的研究方向。分析表明,目前研究主要集中在n型体系,应加强对p型材料的性能优化探索。掺杂对提高热电性能的效果更显著,通过制备工艺的优化,将掺杂和纳米化两种措施结合,可进一步有效优化。
[1] | TANI J I, KIDO H. Thermoelectric properties of Al-doped Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> (x ≤ 0.1)[J]. Journal of Alloys and Compounds, 2008, 466(1-2):335-340. |
[2] | HU Xiao-kai, MAYSON D, BARNETT M R. Synthesis of Mg<sub>2</sub>Si for thermoelectric applications using magnesium alloy and spark plasma sintering[J]. Journal of Alloys and Compounds, 2014, 589:485-490. |
[3] | ISODA Y, TADA S, NAGAI T, et al. Thermoelectric performance of p-type Mg<sub>2</sub>Si<sub>0.25</sub>Sn<sub>0.75</sub> with Li and Ag double doping[J]. Materials Transactions, 2010, 51(5):868-871. |
[4] | HAN Xiao-ping, SHAO Guo-sheng. Interplay between Ag and interstitial Mg on the p-type characteristics of Ag-doped Mg<sub>2</sub>Si:challenges for high hole conductivity[J]. Journal of Materials Chemistry C, 2015, 3(3):530-537. |
[5] | IHOU-MOUKO H, MERCIER C, TOBOLA J, et al. Thermoelectric properties and electronic structure of p-type Mg<sub>2</sub>Si and Mg<sub>2</sub>Si<sub>0.6</sub>Ge<sub>0.4</sub> compounds doped with Ga[J]. Journal of Alloys and Compounds, 2011, 509(23):6503-6508. |
[6] | TADA S, ISODA Y, UDONO H, et al. Thermoelectric properties of p-type Mg<sub>2</sub>Si<sub>0.25</sub>Sn<sub>0.75</sub> doped with sodium acetate and metallic sodium[J]. Journal of Electronic Materials, 2014, 43(6):1580-1584. |
[7] | ZHANG Qiang, CHENG Long, LIU Wei, et al. Low effective mass and carrier concentration optimization for high performance p-type Mg<sub>2(1-x)</sub>Li<sub>2x</sub>Si<sub>0.3</sub>Sn<sub>0.7</sub> solid solutions[J]. Physical Chemistry Chemical Physics, 2014, 16(43):23576-23583. |
[8] | TANG Xiao-dan, WANG Gui-wen, ZHENG Yong, et al. Ultra rapid fabrication of p-type Li-doped Mg<sub>2</sub>Si<sub>0.4</sub>Sn<sub>0.6</sub> synthesized by unique melt spinning method[J]. Scripta Materialia, 2016, 115:52-56. |
[9] | KANG Yong-min, BROCKWAY L, VADDIRAJU S. A simple phase transformation strategy for converting silicon nanowires into metal silicide nanowires:Magnesium silicide[J]. Materials Letters, 2013, 100:106-110. |
[10] | FIAMENI S, BATTISTON S, BOLDRINI S, et al. Synthesis and characterization of Bi-doped Mg<sub>2</sub>Si thermoelectric materials[J]. Journal of Solid State Chemistry, 2012, 193:142-146. |
[11] | CEDERKRANTZ D, FARAHI N, BORUP K A, et al. Enhanced thermoelectric properties of Mg<sub>2</sub>Si by addition of TiO<sub>2</sub> nanoparticles[J]. Journal of Applied Physics, 2012, 111(2):023701. |
[12] | JUNG J Y, KIM I H, CHOI S M, et al. Synthesis of thermoelectric Mg<sub>2</sub>Si by mechanical alloying[J]. Journal of the Korean Physical Society, 2010, 57(4):1005-1009. |
[13] | AKASAKA M, ⅡDA T, NISHIO K, et al. Composition dependent thermoelectric properties of sintered Mg<sub>2</sub>Si<sub>1-x</sub>Ge<sub>x</sub> (x=0 to 1) initiated from a melt-grown polycrystalline source[J]. Thin Solid Films, 2007, 515(22):8237-8241. |
[14] | ZHU Tie-jun, CAO Yi-qi, ZHANG Qiang, et al. Bulk nanostructured thermoelectric materials:Preparation, structure and properties[J]. Journal of Electronic Materials, 2009, 39(9):1990-1995. |
[15] | SAMUNIN A Y, ZAITSEV V K, KONSTANTIOV P P, et al. Thermoelectric properties of hot-pressed materials based on Mg<sub>2</sub>Si<sub>n</sub>Sn<sub>1-n</sub>[J]. Journal of Electronic Materials, 2012, 42(7):1676-1679. |
[16] | BASHIR M B A, SAID S M, SABRI M F M, et al. Recent advances on Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> materials for thermoelectric generation[J]. Renewable and Sustainable Energy Reviews, 2014, 37(3):569-584. |
[17] | LIU Wei, TAN Xiao-jian, YIN Kang, et al. Convergence of conduction cands as a means of enhancing thermoelectric performance of n-type Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> solid solutions[J]. Physical Review Letters, 2012, 108(16):166601. |
[18] | LIU Wei, ZHANG Qiang, YIN Kang, et al. High figure of merit and thermoelectric properties of Bi-doped Mg<sub>2</sub>Si<sub>0.4</sub>Sn<sub>0.6</sub> solid solutions[J]. Journal of Solid State Chemistry, 2013, 203:333-339. |
[19] | KHAN A U, VLACHOS N V, HATZIKRANIOTIS E, et al. Thermoelectric properties of highly efficient Bi-doped Mg<sub>2</sub>Si<sub>1-x-y</sub>Si<sub>x</sub>Ge<sub>y</sub> materials[J]. Acta Materialia, 2014, 77:43-53. |
[20] | SAKAMOTO T, ⅡDA T, MATSUMOTO A, et al. Thermoelectric characteristics of a commercialized Mg<sub>2</sub>Si source doped with Al, Bi, Ag, and Cu[J]. Journal of Electronic Materials, 2010, 39(9):1708-1713. |
[21] | MARS K, IHOU-MOUKO H, PONT G, et al. Thermoelectric properties and electronic structure of Biand Ag-doped Mg<sub>2</sub>Si<sub>1-x</sub>Ge<sub>x</sub> compounds[J]. Journal of Electronic Materials, 2009, 38(7):1360-1364. |
[22] | LI Wu, LINDSAY L, BROIDO D A, et al. Thermal conductivity of bulk and nanowire Mg<sub>2</sub>Si<sub>x</sub>Sn<sub>1-x</sub> alloys from first principles[J]. Physical Review B, 2012, 86(17):174307. |
[23] | YANG Mei-jun, SHEN Qiang, ZHANG Lian-meng. Effect of nanocomposite structure on the thermoelectric properties of 0.7-at% Bi-doped Mg<sub>2</sub>Si nanocomposite[J]. Chinese Physics B, 2011, 20(10):106202. |
[24] | BISWAS K, HE Jia-qing, ZHANG Qi-chun, et al. Strained endotaxial nanostructures with high thermoelectric figure of merit[J]. Nature Chemistry, 2011, 3(2):160-166. |
[25] | THIAGARAJAN S J, WANG Wei, YANG Rong-gui. Nanocomposites as high efficiency thermoelectric materials[C]//Annual Review of Nano Research. Boulder, CO, USA:World Scientific, 2010:441-486. |
[26] | SANTOS R, NANCARROW M, DOU S X, et al. Thermoelectric performance of n-type Mg<sub>2</sub>Ge[J]. Scientific Reports, 2017, 7:3988. |
[27] | VASILEVSKIY D, KESHAVARZ M K, DUFOURCQ J, et al. Bulk Mg<sub>2</sub>Si based n-type thermoelectric material produced by gas atomization and hot extrusion[J]. Materials Today:Proceedings, 2015, 2(2):523-531. |
[28] | BERTHEBAUD D, GASCOIN F. Microwaved assisted fast synthesis of n and p-doped Mg<sub>2</sub>Si[J]. Journal of Solid State Chemistry, 2013, 202:61-64. |
[29] | ZHOU Shu-cai, BAI Chen-guang. Microwave direct synthesis and thermoelectric properties of Mg<sub>2</sub>Si by solid-state reaction[J]. Transcations of Nonferrous Metals Society of China, 2011, 21(8):1785-1789. |
[30] | SAVARY E, GASCOIN F, MARINEL S. Fast synthesis of nanocrystalline Mg<sub>2</sub>Si by microwave heating:a new route to nano-structured thermoelectric materials[J]. Dalton Transactions, 2010, 39(45):11074-11080. |
[31] | 柳伟. 掺杂结合能带结构调控优化型Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub>基材料热电性能的研究[D]. 武汉:武汉理工大学材料复合新技术国家重点实验室, 2012. LIU Wei. Optimization of thermoelectric properties of the n-type Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> based materials through doping as well as the adjustment and control of band structure[D]. Wuhan:State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 2012. |
[32] | IOANNOU M, POLYMERIS G S, HATZIKRANIOTIS E, et al. Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg<sub>2</sub>Si materials[J]. Journal of Physics and Chemistry of Solids, 2014, 75(8):984-991. |
[33] | CHOI S M, KIM K H, KIM I H, et al. Thermoelectric properties of the Bi-doped Mg<sub>2</sub>Si system[J]. Current Applied Physics, 2011, 11(3):S388-S391. |
[34] | LUO Wei-jun, YANG Mei-jun, SHEN Qiang, et al. Effect of Bi doping on the thermoelectric properties of Mg<sub>2</sub>Si<sub>0.5</sub>Sn<sub>0.5</sub> compound[J]. Advanced Materials Research, 2009, 66(2):33-36. |
[35] | GAO Hong-li, ZHU Tie-jun, ZHAO Xin-bing, et al. Variations of thermoelectric properties of Mg<sub>2.2</sub>Si<sub>1-y</sub>Sn<sub>y-0.013</sub>Sb<sub>0.013</sub> materials with different Si/Sn ratios[J]. Journal of Solid State Chemistry, 2014, 220:157-162. |
[36] | GAO Hong-li, ZHU Tie-jun, LIU Xin-xin, et al. Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg<sub>2</sub>Si<sub>0.5</sub>Sn<sub>0.5</sub> solid solutions for energy harvesting[J]. Journal of Materials Chemistry, 2011, 21(16):5933-5937. |
[37] | LIU Wei, Tang Xin-feng, SHARP J. Low-temperature solid state reaction synthesis and thermoelectric properties of high-performance and low-cost Sb-doped Mg<sub>2</sub>Si<sub>0.6</sub>Sn<sub>0.4</sub>[J]. Journal of Physics D:Applied Physics, 2010, 43(8):085406. |
[38] | LIU Wei, TANG Xin-feng, LI Han, et al. Enhanced thermoelectric properties of n-type Mg<sub>2.16</sub>(Si<sub>0.4</sub>Sn<sub>0.6</sub>)<sub>1-y</sub> Sb<sub>y</sub> due to nano-sized Sn-rich precipitates and an optimized electron concentration[J]. Journal of Materials Chemistry, 2012, 22(27):13653-13661. |
[39] | ZHANG Xin, LIU Hong-liang, LI Song-hao, et al. Tunable microstructures and improved thermoelectric performance of Mg<sub>2</sub>(Si<sub>0.4-x</sub>Sb<sub>x</sub>Sn<sub>0.6</sub>) solid solutions[J]. Materials Letters, 2014, 123:31-34. |
[40] | GAO Peng, BERKUN I, SCHMIDT R D, et al. Transport and mechanical properties of high-ZT Mg<sub>2.08</sub>Si<sub>0.4-x</sub>Sn<sub>0.6</sub>Sb<sub>x</sub> thermoelectric materials[J]. Journal of Electronic Materials, 2014, 43(6):1790-1803. |
[41] | GAO Peng, LU Xu, BERKUN I, et al. Reduced lattice thermal conductivity in Bi-doped Mg<sub>2</sub>Si<sub>0.4</sub>Sn<sub>0.6</sub>[J]. Applied Physic Letters, 2014, 105(20):202104. |
[42] | ARAI K, SASAKI A, KIMORI Y, et al. Thermoelectric properties of Sb-doped Mg<sub>2</sub>(Si<sub>0.95</sub>Ge<sub>0.05</sub>) synthesized by spark plasma sintering[J]. Materials Science and Engineering, 2015, 195:45-49. |
[43] | DU Z L, GAO H L, CUI J L. Thermoelectric performance of quaternary Mg<sub>2(1+x)</sub>Si<sub>0.2</sub>Ge<sub>0.1</sub>Sn<sub>0.7</sub>(0.06≤ x ≤ 0.12) solid solutions with band convergence[J]. Current Applied Physics, 2015, 15(7):784-788. |
[44] | KHAN A U, VLACHOS N, KYRATSI T. High thermoelectric figure of merit of Mg<sub>2</sub>Si<sub>0.55</sub>Sn<sub>0.4</sub>Ge<sub>0.05</sub> materials doped with Bi and Sb[J]. Scripta Materialia, 2013, 69(8):606-609. |
[45] | JIANG Guang-yu, CHEN Lu-xin, HE Jian, et al. Improving p-type thermoelectric performance of Mg<sub>2</sub>(Ge,Sn) compounds via solid solution and Ag doping[J]. Intermetallics, 2013, 32:312-317. |
[46] | IOANNOU M, HATZIKRANIOTIS E, LIOUTAS C, et al. Fabrication of nanocrystalline Mg<sub>2</sub>Si via ball milling process:Structural studies[J]. Powder Technology, 2012, 217:523-532. |
[47] | STATHOKOSTOPOULOS D, CHALIAMPALIAS D, STEFANAKI E C, et al. Structure, morphology and electrical properties of Mg<sub>2</sub>Si layers deposited by pack cementation[J]. Applied Surface Science, 2013, 285:417-424. |
[48] | TAN Xiao-jian, LIU Wei, LIU Hui-jun, et al. Multiscale calculations of thermoelectric properties of n-type Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> solid solutions[J]. Physical Review B, 2012, 85(20):205212. |
[49] | LIU Xiao-hua, ZHU Tie-jun, WANG Heng, et al. Low electron scattering potentials in high performance Mg<sub>2</sub>Si<sub>0.45</sub>Si<sub>0.55</sub> based thermoelectric solid solutions with band convergence[J]. Advanced Energy Materials, 2013, 3(9):1238-1244. |
[50] | JIANG Guang-yu, HE Jian, ZHU Tie-jun, et al. High performance Mg<sub>2</sub>(Si,Sn) solid solutions:a point defect chemistry approach to enhancing thermoelectric properties[J]. Advanced Functional Materials, 2014, 24(24):3776-3781. |
[51] | WANG Han-fu, CHU Wei-guo, JIN Hao. Theoretical study on thermoelectric properties of Mg<sub>2</sub>Si and comparison to experiments[J]. Computational Materials Science, 2012, 60:224-230. |
[52] | TANI J I, KIDO H. First-principles and experimental studies of impurity doping into Mg<sub>2</sub>Si[J]. Intermetallics, 2008, 16(3):418-423. |
[53] | TANI J I, KIDO H. Fabrication and thermoelectric properties of Mg<sub>2</sub>Si-based composites using reduction reaction with additives[J]. Intermetallics, 2013, 32(2):72-80. |
[54] | YELGEL O C. Theoretical study of thermoelectric properties of n-type doped Mg<sub>2</sub>Si<sub>0.4</sub>Sn<sub>0.6</sub> solid solutions[J]. Philosophical Magazine, 2016, 96(6):560-575. |
[55] | YOU S W, KIM I H. Solid-state synthesis and thermoelectric properties of Bi-doped Mg<sub>2</sub>Si compounds[J]. Current Applied Physics, 2011, 11(3):S392-S395. |
[56] | YANG Mei-jun, LUO Wei-jun, SHEN Qiang, et al. Preparation and thermoelectric properties of Bi-doped Mg<sub>2</sub>Si nanocomposites[J]. Advanced Materials Research, 2009, 66(28):17-20. |
[57] | MENG Q S, FAN W H, CHEN R X, et al. Thermoelectric properties of Sc-and Y-doped Mg<sub>2</sub>Si prepared by field-activated and pressure-assisted reactive sintering[J]. Journal of Alloys and Compounds, 2011, 509(30):7922-7926. |
[58] | ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al. Highly effective Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> thermoelectric[J]. Physical Review B, 2006, 74(4):045207. |
[59] | GAO Peng, DAVIS J D, POLTAVETS V V, et al. The p-type Mg<sub>2</sub>Li<sub>x</sub>Si<sub>0.4</sub>Sn<sub>0.6</sub> thermoelectric materials synthesized by a B<sub>2</sub>O<sub>3</sub> encapsulation method using Li<sub>2</sub>CO<sub>3</sub> as the doping agent[J]. Journal of Materials Chemistry C, 2016, 4(5):929-934. |
[60] | LIU Wei-shu, YAN Xiao, CHEN Gang, et al. Recent advances in thermoelectric nanocomposites[J]. Nano Energy, 2012, 1(1):42-56. |
[61] | PENG H, WANG C L, LI J C, et al. Elastic and vibrational properties of Mg<sub>2</sub>Si<sub>1-x</sub>Si<sub>x</sub> alloy from first principles calculations[J]. Solid State Communications, 2012, 152(9):821-824. |
[62] | SATYALA N, VASHAEE D. Detrimental influence of nanostructuring on the thermoelectric properties of magnesium silicide[J]. Journal of Applied Physics, 2012, 112(9):093716. |
[63] | PSHENAI-SEVERIN D A, FEDOROV M I, SAMUNIN A Y. The influence of grain boundary scattering on thermoelectric properties of Mg<sub>2</sub>Si and Mg<sub>2</sub>Si<sub>0.8</sub>Sn<sub>0.2</sub>[J].Journal of Electronic Materials, 2013, 42(7):1707-1710. |
[64] | ZHANG Qiang, HE J, ZHU Tie-jun, et al. High figures of merit and natural nanostructures in Mg<sub>2</sub>Si<sub>0.4</sub>Sn<sub>0.6</sub> based thermoelectric materials[J]. Applied Physics Letters, 2008, 93(10):10209. |
[65] | ISODA Y, TADA S, NAGAI T, et al. Thermoelectric properties of p-type Mg<sub>2.00</sub>Si<sub>0.25</sub>Sn<sub>0.75</sub> with Li and Ag double doping[J]. Journal of Electronic Materials, 39(9):1531-1535. |
[66] | SUN Bin, LI Shu-feng, IMAI H, et al. Synthesis kinetics of Mg<sub>2</sub>Si and solid-state formation of Mg-Mg<sub>2</sub>Si composite[J]. Powder Technology, 2012, 217:157-162. |
[67] | KIM K H, CHOI S M, SEO W S, et al. Synthesis characteristics and thermoelectric properties of the rare-earth-doped Mg<sub>2</sub>Si system[J]. Journal of the Korean Physical Society, 2010, 57(4):1072-1076. |