|
- 2018
基于证据理论和代理模型的QMU分析
|
Abstract:
针对结构可靠性或性能评估中的随机和认知不确定性同时存在的情况,根据性能裕量与不确定性量化的概念,提出了基于证据理论和Kriging代理模型的性能裕量与不确定性量化分析计算方法。该方法首先对随机变量进行抽样并通过优化求解证据焦元内结构性能响应极值分布并生成训练样本空间,通过最大置信水平期望提高加点准则构建并更新Kriging代理模型,提高裕量与不确定性量化分析过程中不确定性传播的效率和精度,在此基础上通过计算置信因子实现结构可靠性或性能评估度量。最后通过算例比较研究了基于置信因子度量结构可靠性和结构非概率可靠性之间的差异。
[1] | HELTON J C, JOHNSON J D, OBERKAMPF W L, et al. Representation of analysis results involving aleatory and epistemic uncertainty[J]. International Journal of General Systems, 2010, 39(6):605-646. |
[2] | HELTON J C. Alternative representations of epistemic uncertainty[J]. Reliability Engineering and System Safety, 2004, 85(1-3):1-10. |
[3] | RACKWITZ R. Reliability analysis-a review and some perspectives[J]. Structural Safety, 2001, 23(4):365-395. |
[4] | AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4):263-277. |
[5] | DU X, VENIGELLA P K, LIU D. Robust mechanism synthesis with random and interval variables[J]. Mechanism & Machine Theory, 2009, 7(7):1321-1337. |
[6] | BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4):227-245. |
[7] | ELISHAKOFF I, ELISSEEFF P, GLEGG S A L. Nonprobabilistic, convex-theoretic modeling of scatter in material properties[J]. AIAA Journal, 1994, 32(4):843-849. |
[8] | HUANG H Z, WANG Z L, LI Y F, et al. A nonprobabilistic set model of structural reliability based on satisfaction degree of interval[J]. Mechanika, 2011, 8(1):85-92. |
[9] | NAS, NRC. Evaluation of quantification of margins and uncertainties for assessing and certifying the reliability of the nuclear stockpile[R]. Washington:National Academy Press, 2008. |
[10] | LUCAS L J, OWHADI H, ORTIZ M. Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51-52):4591-4609. |
[11] | SENTZ K, FERSON S. Probabilistic bounding analysis in the quantification of margins and uncertainties[J]. Reliability Engineering and System Safety, 2011, 96:1126-1136. |
[12] | URBINA A, MAHADEVAN S, PAEZ T L. Quantification of margins and uncertainties of complex systems in the presence of aleatory and epistemic uncertainty[J]. Reliability Engineering and System Safety, 2011, 96:1114-1125. |
[13] | BANG I K, HAN D S, HAN G J, et al. Structural optimization for a jaw using iterative Kriging metamodels[J]. Journal of Mechanical Science and Technology, 2008, 22(9):1651-1659. |
[14] | WANG Z, WANG P. A maximum confidence enhancement based sequential sampling scheme for simulation-based design[J]. Journal of Mechanical Design, 2014, 136(2):1-10. |
[15] | DU X P. Unified uncertainty analysis by the first order reliability method[J]. Journal of Mechanical Design, 2008, 130(9):1-10. |
[16] | EARDLEY D. Quantification of margins and uncertainties (QMU)[R/OL].[2016-03-05]. https://fas.org/irp/agency/dod/jason/margins.pdf. |
[17] | PEPIN J E, RYTHERFORD A C, HEMEZ F M. Define a practical QMU metric[C]//49th AIAA Structures, Structural Dynamics and Materials Conference.[S.l.]:[s.n.], 2008. |
[18] | BAE H R, GRANDHI R V, CANFIELD R A. An approximation approach for uncertainty quantification using evidence theory[J]. Reliability Engineering and System Safety, 2004, 86(3):215-225. |
[19] | MARTIN J D, SIMPSON T W. Use of kriging models to approximate deterministic computer models[J]. AIAA Journal, 2005, 43(4):853-863. |