全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

噪声信道下量子隐形传态协议研究综述
A Literature Review of the Research of Quantum Teleportation Protocols for Noise

DOI: 10.3969/j.issn.1001-0548.2018.01.011

Keywords: 量子密钥分发,量子通信,量子纠缠演化,量子隐形传态

Full-Text   Cite this paper   Add to My Lib

Abstract:

实用化量子隐形传态技术作为发展可拓展量子计算和量子网络的必经途径,在金融、政务、国防军事、远距离通信(如空间探测)等领域中大显身手,量子纠缠与超联合测量给量子隐形传态基础理论和应用技术带来了巨大挑战,同时也为理论和技术(应用)层面产生基础创新带来了契机。该文从量子纠缠演化与免疫噪声模型、量子信道容量与编码、量子隐形传态机制方面对免疫噪声的量子隐形传态协议研究进行综述,最后探讨未来的研究热点和发展趋势。

References

[1]  HUANG Chien-cheng, FARN K J. A study on e-Taiwan promotion information security governance programs with e-government implementation of information security management standardization[J]. International Journal of Network Security, 2016, 18(3):565-578.
[2]  STEFANO P, JENS E, CHRISTIAN W, et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9(10):641-652.
[3]  LOV K G. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997, 79(2):325-328.
[4]  PAOLA C O, FAGNER M P, MARCELO S S. Trace-distance correlations for X, states and the emergence of the pointer basis in Markovian and non-Markovian regimes[J]. Physical Review A, 2015, 92(3):676-677.
[5]  SIOMAU M, STEPHAN F. Entanglement dynamics of three-qubit states in noisy channels[J]. The European Physical Journal D, 2010, 60(2):397-403.
[6]  SIOMAU M. Entanglement dynamics of three-qubit states in local many-sided noisy channels[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 2012, 45(3):035501.
[7]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li. Quantum information splitting of a two-qubit Bell state using a four-qubit entangled state[J]. Chinese Physics C, 2015, 39(4):26-30.
[8]  WANG Rui-jin, LI Dong-fen, DENG Fu-hu. Quantum information splitting of a two-qubit bell state using a five-qubit entangled state[J]. International Journal of Theoretical Physics. 2015, 54(9):3229-3237.
[9]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state[J]. Quantum Information Processing, 2015, 14(3):1103-1116.
[10]  WANG Rui-jin, LI Dong-fen, QIN Zhi-guang. An immune quantum communication model for dephasing noise using four-qubit cluster state. International[J]. Journal of Theoretical Physics, 2016, 55(1):609-616.
[11]  GAO Ting, YAN Feng-li, WANG Zhi-xi. Controlled quantum teleportation and secure direct communication[J]. Chinese Physics, 2017, 14(5):893-897.
[12]  KESTING F, FLORIAN F, WOLFGANG D. Effective noise channels for encoded quantum systems[J]. Physical Review A, 2013, 88(4):042305.
[13]  EYLEE Jung, HWANG Mi-ra, JU You-hwan, et al. Greenberger-horne-zeilinger versus W states:Quantum teleportation through noisy channels[J]. Physical Review A, 2008, 78(1):3332-3335.
[14]  KAUSHIK P S, JONATHAN P D, GIRISH S A. Non-Gaussian entangled states and quantum teleportation of Schrodinger-cat states[J]. Physica Scripta, 2015, 90(7):14-29.
[15]  RAPHAEL F, GUSTAVO R. Fighting noise with noise in realistic quantum teleportation[J]. Physical Review A, 2015, 92(1):23-38.
[16]  ZHANG Kun, ZHANG Yong. Quantum teleportation and Birman-Murakami-Wenzl algebra[J]. Quantum Information Processing, 2017, 16(2):52.
[17]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. A noise immunity controlled quantum teleportation protocol[J]. Quantum Information Processing, 2016, 15(11):4819-4837.
[18]  STEFANO P, RICCARDO L, CARLO O, et al. Fundamental limits of repeaterless quantum communications[J]. Nature Communications, 2017, 8:15043.
[19]  NADER S S, ROSSOUW V S, STEVEN F. Information security policy compliance model in organizations[J]. Computers & Security, 2016, 56:70-82.
[20]  WANG Xi-lin, CAI Xin-dong, SU Zu-en, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540):516-519.
[21]  GERARDO A, ALESSIO S, FABRIZIO I. Multipartite entanglement in three-mode Gaussian states of continuous variable systems:Quantification, sharing structure and decoherence[J]. Physical Review A, 2005, 73(3):176.
[22]  ALMEIDA M P, MELO D F, HOR-MEYLL M, et al. Environment-induced sudden death of entanglement[J]. Science, 2007, 316(5824):579-582.
[23]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state[J]. International Journal of Theoretical Physics, 2015, 54(6):2068-2075.
[24]  ZHUANG Q, ZHU E Y, SHOR P W. Additive classical capacity of quantum channels assisted by noisy entanglement[J]. Physical Review Letters, 2017, 118(20):200503.
[25]  HAYASHI M, IWAMA K, HAYASHI M, et al. Quantum network coding[C]//Annual Symposium on Theoretical Aspects of Computer Science. Berlin, Heidelberg:Springer, 2007:610-621.
[26]  CHEN Da-jiang, QIN Zhen, MAO Xu-fei, et al. SmokeGrenade:an efficient key generation protocol with artificial interference[J]. IEEE Transactions on Information Forensics & Security, 2013, 8(11):1731-1745.
[27]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li. Quantum information splitting of a two-qubit Bell state using a four-qubit entangled state[J]. Chinese Physical C, 2015, 39(4):26-30.
[28]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li. Quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ-state[J]. International Journal of Theoretical Physics, 2015, 54(4):1142-1153.
[29]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al.Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state[J]. International Journal of Theoretical Physics, 2015, 54(6):2068-2075.
[30]  SETH L. The capacity of the noisy quantum channel[J]. Phys Rev A, 1997, 55(3):1613-1622.
[31]  ZAHRA S, HERMANN K, CHIARA M, et al. Optimal super dense coding over noisy quantum channels[J]. Physics, 2010, 12(30):1653-1655.
[32]  LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. Splitting unknown qubit State using five-qubit entangled state[J]. International Journal of Theoretical Physics, 2016, 55(4):1962-1972.
[33]  LIANG Hua-qiu, LIU Jin-ming, FENG Shang-shen, et al. Quantum teleportation with partially entangled states via noisy channels[J]. Quantum Information Processing, 2013, 12(8):2671-2687.
[34]  TRENT M G, HERBERT J B, TZU-CHIEH W, et al. Superdense teleportation using hyperentangled photons[J]. Nature Communications, 2014, 6:7185.
[35]  ZUPPARDO M, KRISNANDA T, PATEREK T, et al. Excessive distribution of quantum entanglement[J]. Phys Rev A, 2016, 93(1):56-67.
[36]  XIAO Xing, YAO Yao, ZHONG Wo-jun, et al. Enhancing teleportation of quantum Fisher information by partial measurements[J]. Physical Review A, 2016, 93(1):23-37.
[37]  LI Tong-cang, YIN Zhang-qi. Erratum to:Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator[J]. Science Bulletin, 2016, 61(3):163-171.
[38]  MICHAEL X C, PASCAL O V. Estimating the information rate of a channel with classical input and output and a quantum state(extended version)[C]//2017 IEEE International Symposium on Information Theory. Aachen, Germany:IEEE, 2017:1381-1390.
[39]  GIUSEPPE S, ROBERTO L. Quantum approach to epistemic semantics[J]. Soft Computing, 2017, 21(6):1381-1390.
[40]  WU Chen-miao, LI Yang. Qubit-wise teleportation and its application in public-key secret communication[J]. Science China Information Sciences, 2017, 60(3):032501.
[41]  HIROKI T. Quantum communication experiments over optical fiber[M]//YAMAMOTO Y, SEMBA K. Principles and Methods of Quantum Information Technologies,[s.l.]:Springer, 2016:53-70.
[42]  RYSZARD H, PAWEL H, MICHAL H, et al. Quantum entanglement[J]. Review of Modern Physics, 2007, 81(2):865-942.
[43]  MARGHERITA Z, TANJUNG K, TOMASZ P, et al. Excessive distribution of quantum entanglement[J]. Physical Review A, 2015, 93(1):12-35.
[44]  ?PI?KA V, NIEUWENHUIZEN T M, KEEFE P D Physics at the FQMT'11 conference[J]. Physica Scripta, 2012(3):1-28.
[45]  LEONARDO B, SAMUEL L B, STEFANO P. Quantum fidelity for arbitrary gaussian states[J]. European Physical Journal Special Topics, 2015, 160(1):225-234.
[46]  DIVINCENZO D P. Quantum computation[J]. Science, 1995, 270(5234):255-261.
[47]  BENNETT C H, DIVINCENZO D P. Quantum information and computation[J]. Physics Today, 1995, 48(1):247-255.
[48]  LIDAR D A, BACON D, WHALEY K B. Concatenating decoherence-free subspaces with quantum error correcting codes[J]. Phys Rev Lett, 1999, 82:4556.
[49]  WANG Rui-jin,LI Dong-fen, LIU Yao, et al. Two ways of robust quantum dialogue by using four-qubit cluster state[J]. International Journal of Theoretical Physics, 2015, 55(4):2110-2124.
[50]  TING Yu, EBERLY J H. Finite-time disentanglement via spontaneous emission[J]. Physical Review Letters, 2004, 93(14):140404.
[51]  CARUSO F, VITTORIO G, COSMO L, et al. Quantum channels and memory effects[J]. Reviews of Modern Physics, 2014, 86(4):1203-1259.
[52]  MAZHAR A. Robustness of genuine tripartite entanglement under collective dephasing[J]. Chinese Physics Letters, 2015, 32(6):060302.
[53]  BENJAMIN S, MICHAEL W. Sending classical information via noisy quantum channels[J]. Physical Review A, 1997, 56(1):131-138.
[54]  DEVETAK I. The private classical capacity and quantum capacity of a quantum channel[J]. IEEE Transactions on Information Theory, 2004, 51(1):44-55.
[55]  SHOR P W. Equivalence of additivity questions in quantum information theory[J]. Communications in Mathematical Physics, 2004, 246(3):453-472.
[56]  GRAEME S, JOHN A S, ANDREAS W. The quantum capacity with symmetric side channels[J]. IEEE Transactions on Information Theory, 2008, 54(9):4208-4217.
[57]  FREDERIK K, FLORIAN F, WOLFGANG D. Effective noise channels for encoded quantum systems[J]. Physical Review A, 2013, 88(4):3367-3376.
[58]  WANG Rui-jin, LI Dong-fen, QIN Zhi-guang. An immune quantum communication model for dephasing noise using four-qubit cluster state[J]. International Journal of Theoretical Physics, 2016, 55(1):609-616.
[59]  ANTONIO D, GIULIANO B, GIUSEPPE F, et al. Information transmission over an amplitude damping channel with an arbitrary degree of memory[J]. Physical Review A, 2015, 92(6):062342.
[60]  BENNETT C, GILLS B, CLAUDE C, et al. Teleporting an unknown quantum state via dual classical and einsteinpodolsky-rosen channels[J]. Physics Review Letters, 1993, 70(13):1895-1899.
[61]  DAVIDOVICH L, ZAGURY N, BRUNE M, et al. Teleportation of an atomic state between two cavities using nonlocal microwave fields[J]. Physical Review A, 1994, 50(2):R895-R898.
[62]  BENNETT C, GILLES B, SANDU P, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Physical Review Letters, 1996, 78(10):2031.
[63]  BOUWMEESTER D, PAN Jian-wei, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1999, 390(11):575-579.
[64]  BRAUNSTEIN S L, KIMBLE H J, SORENSEN Y, et al. Teleportation of continuous quantum variables[J]. Physical Review Letters, 1998, 80(4):67-75.
[65]  FURUSAWA A, SORENSEN J L, BRAUNSTEIN S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389):706.
[66]  SANGCHUL O, LEE S, LEE Hai-woong. Fidelity of quantum teleportation through noisy channels[J]. Physical Review A, 2002, 66(2):207-212.
[67]  WARWICK P B, NICOLAS T, BEN C B, et al. Experimental investigation of continuous-variable quantum teleportation[J]. Physical Review A, 2002, 67(3):535-542.
[68]  NOBUYUKI T, TAKAO A, SATOSHI K, et al. Experimental demonstration of quantum teleportation of a squeezed state[J]. Physical Review A, 2005, 72(4):440-450.
[69]  JIN Xian-min, REN Ji-gang, YANG Bin, et al. Experimental free-space quantum teleportation[J]. Nature Photonics, 2010, 4(6):376-381.
[70]  HU Ming-liang. Environment-induced decay of teleportation fidelity of the one-qubit state[J]. Physics Letters A, 2011, 375(21):2140-2143.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413