全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于单维拉线测量系统的码垛机器人定位误差分析及运动学标定
Positioning Error Analysis and Kinematic Calibration of Robot Palletizer Based on One-Dimensional Cable Measurement System

DOI: 10.11784/tdxbz201707053

Keywords: 拉线位移传感器,码垛机器人,运动学标定
draw-wire displacement sensor
,robot palletizer,kinematic calibration

Full-Text   Cite this paper   Add to My Lib

Abstract:

以四自由度码垛机器人为研究对象, 基于单维拉线测量系统对该机器人的运动学标定方法进行了研究.采用环路增量法构造了码垛机器人平行四连杆的误差模型, 并建立了带关节变量比例系数的运动学误差模型, 从而对关节传动误差进行补偿.通过对影响机器人末端位置精度的几何误差参数进行敏感性分析, 将几何误差源简化为11项, 可有效提高辨识效率.结合单维拉线测量系统的特点, 建立了末端运动误差与几何误差源的映射关系, 进而提出了一种基于距离测量的参数辨识模型.通过计算机仿真和标定试验对该方法的有效性进行了验证.试验结果表明, 标定后码垛机器人位置误差值由11.73 mm减小至1.79 mm, 运动精度提升84.7% .
An example of a 4-DOF robot palletizer was applied to study the kinematic calibration method based on one-dimensional cable measurement system. The parallel four-connecting rods error model of robot palletizer was built by loop incremental method,and the kinematic error model with joint variable proportionality was established,which could compensate the error of joint transmission. The number of geometric error sources was reduced to 11 by analyzing the sensitivities of geometric error parameters to the position accuracy of robot,which could promote the efficiency of identification. The parameter identification model based on distance-measurement was proposed by building the mapping of end motion error and geometric error sources according to the characteristics of one-dimensional cable measurement system. The validity of the method is verified by computer simulation and calibration experiment. The experiment results show that the 3 sigma value of robot position error decreased from 11.73 mm to 1.79 mm after calibration,that is increased by 84.7%

References

[1]  Meng Y, Zhuang H. Autonomous robot calibration using vision technology[J]. <i>Robotics and Computer-Integrated Manufacturing</i>, 2007, 23(4):436-446.
[2]  Xiao Yongqiang, You Wei, Kong Minxiu, et al. Industrial calibration system based on cable sensors[J]. <i>Robot Technology and Application</i>, 2015(6):26-30(in Chinese).
[3]  Legnani G, Tiboni M. Optimal design and application of a low-cost wire-sensor system for the kinematic calibration of industrial manipulators[J]. <i>Mechanism & Machine Theory</i>, 2014, 73(2):25-48.
[4]  刘凤臣, 刘黎明, 姚?S峰, 等. 平行四边形机构在后道包装机械中的应用[J]. 包装与食品机械, 2010, 28(5):51-55.
[5]  Ceccarelli M, Avila Carrasco C, Ottaviano E. Error analysis and experimental tests of CATRASYS(Cassino tracking system)[C]//2000 <i>IEEE International Conference on Industrial Electronics</i>, <i>Control and Instrumentation</i>. Nagoya, Japan, 2000:2371-2376.
[6]  Ceccarelli M, Ottaviano E, Toti M. Experimental determination of robot workspace by means of CATRASYS(Cassino tracking system)[C]//<i>Romansy<i> 13:<i>Theory and Practice of Robots and Manipulators</i>, 2000:85-92.
[7]  洪银芳, 鲍晟, 高慧慧. 拉线式机器人末端定位精度测量系统[J]. 工业控制计算机, 2016, 29(4):40-41.
[8]  Hong Yinfang, Bao Sheng, Gao Huihui. Positioning accuracy and trajectory cable-measurement system[J]. <i>Industrial Control Computer</i>, 2016, 29(4):40-41(in Chinese).
[9]  肖永强, 游玮, 孔民秀, 等. 基于拉线传感器的工业机器人标定系统研制[J]. 机器人技术与应用, 2015(6):26-30.
[10]  Liu Fengchen, Liu Liming, Yao Yunfeng, et al. Application of parallelogram mechanism in secondary packing machinery[J]. <i>Packing Food Machine</i>, 2010, 28(5):51-55(in Chinese).
[11]  Shi Zechang, Liu Shenhou. <i>Mechanism Precision</i>[M]. Beijing:Higher Education Press, 1995(in Chinese).
[12]  Bonev I A, Slamani M. Characterization and experimental evaluation of gear transmission errors in an industrial robot[J]. <i>Industrial Robot</i>, 2013, 40(5):441-449.
[13]  Hayati S A. Robot arm geometric link parameter estimation[C]// <i>IEEE Conference on Decision and Control.<i> San Antonio, USA, 1983:1477-1483.
[14]  Messay T, Ordó?ez R, Marcil E. Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots[J]. <i>Robotics and Computer-Integrated Manufacturing</i>, 2016, 37:33-48.
[15]  Wu Y, Li C, Li J, et al. Comparative study of robot kinematic calibration algorithms using a unified geometric framework[C]//2014 <i>IEEE International Conference on Robotics and Automation</i>. Hong Kong, China, 2014:1393-1398.</i></i></i></i>
[16]  Elatta A Y, Li P G, Zhi F L, et al. An overview of robot calibration[J]. <i>Information Technology Journal</i>, 2004, 3(1):377-385.
[17]  Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. <i>Robotics and Computer-Integrated Manufacturing</i>, 2013, 29(1):236-245.
[18]  Driels M R, Swayze L W, Potter L S. Full-pose calibration of a robot manipulator using a coordinate-measuring machine[J]. <i>The International Journal of Advanced Manufacturing Technology</i>, 1993, 8(1):34-41.
[19]  Nubiola A, Bonev I A. Absolute robot calibration with a single telescoping ballbar[J]. <i>Precision Engineering</i>, 2014, 38(3):472-480.
[20]  石则昌, 刘深厚. 机构精确度[M]. 北京:高等教育出版社, 1995.
[21]  Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. <i>Trans of the ASME Journal of Applied Mechanics</i>, 1955, 22:215-221.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133