全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

复乳液在延展流中流变行为研究
Rheological Behaviors Investigation of Multiple-Emulsion Globules in Extensional Flows

DOI: 10.11784/tdxbz201703098

Keywords: 边界元方法,延展流,复乳液,流变行为,界面曲率
boundary element method
,extensional flows,multiple-emulsion globules,rheological behaviors,interface curvature

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究复乳液内部子液滴的大小和位置分布对其流变行为的影响, 采用二维波谱边界元素法数值模拟了延展流中同心复乳液和非对称复乳液的流变行为.通过改变子液滴的大小和位置得到复乳液不同的流变行为, 并深入分析其变形和移动机理.研究结果表明:在不同的毛细管数下, 同心复乳液内部子液滴的存在对复乳液的变形有正反双重作用; 双子液滴的不对称分布导致非对称复乳液两侧界面变形和曲率不对称, 界面曲率差驱使母液滴在延展流中发生移动.
In order to explore the impact of inner droplets’ size and position on rheological behaviors of outer droplets,the two-dimensional spectral boundary element method was employed to simulate the rheological behaviors of concentric multiple-emulsion globules and asymmetric multiple-emulsion globules in extensional flows. The different rheological behaviors of multiple-emulsion globules were obtained by changing the size and position of the inner droplets,and the mechanism of deformation and movement was deeply analyzed. The results show that the inner droplet of the concentric multiple-emulsion globules has positive or negative effects on the deformation of the globules under different capillary numbers. The asymmetric layout of the double-emulsion droplets leads to the asymmetric deformation of the globules with different interface curvatures,which causes the oriented shift of the globules

References

[1]  Nie Z, Li W, Seo M, et al. Janus and ternary particles generated by microfluidic synthesis:Design, synthesis, and self-assembly[J]. <i>Journal of the American Chemical Society</i>, 2006, 128(29):9408-9413.
[2]  Yen B K H, Stott N E, Jensen K F, et al. A continuous-flow microcapillary reactor for the preparation of a size series of cdse nanocrystals[J]. <i>Advanced Materials</i>, 2003, 15(15):1858-1862.
[3]  Wang J T, Liu J X, Han J J, et al. Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method[J]. <i>Physical Review Letters</i>, 2013, 110(6):066001.
[4]  Qu X, Wang Y. Dynamics of concentric and eccentric compound droplets suspended in extensional flows[J]. <i>Physics of Fluids</i>, 2012, 24(12):2753-2765.
[5]  Dimitrakopoulos P, Wang J. A spectral boundary element algorithm for interfacial dynamics in two-dimensional Stokes flow based on Hermitian interfacial smoothing[J]. <i>Engineering Analysis with Boundary Elements</i>, 2007, 31(7):646-656.
[6]  Oh J K, Drumright R, Siegwart D J, et al. The development of microgels/nanogels for drug delivery applications[J]. <i>Progress in Polymer Science</i>, 2008, 33(4):448-477.
[7]  Shah R K, Shum H C, Rowat A C, et al. Designer emulsions using microfluidics[J]. <i>Materials Today</i>, 2008, 11(4):18-27.
[8]  Mcclements D J. Advances in fabrication of emulsions with enhanced functionality using structural design principles[J]. <i>Current Opinion in Colloid & Interface Science</i>, 2012, 17(5):235-245.
[9]  王靖涛, 韩俊杰, 陶君, 等. 利用波谱边界元素法研究微通道内液滴、气泡的变形和聚并[J]. 化工进展, 2011(增2):26-29.
[10]  Taylor G I. The viscosity of a fluid containing small drops of another fluid[J]. <i>Proceedings of the Royal Society of London</i>, 1932, 138(834):41-48.
[11]  Chen Y P, Liu X D, Zhang C B, et al. Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear[J]. <i>Lab Chip</i>, 2015, 15(5):1255-1261.
[12]  Wiles C, Watts P. ChemInform abstract:Recent advances in micro reaction technology[J]. <i>Chemical Communications</i>, 2011, 47(23):6512-6535.
[13]  Wang Jingtao, Han Junjie, Tao Jun, et al. Study on deformation and aggregation of droplets and bubbles in microchannels using spectral boundary element method[J]. <i>Progress in Chemical Industry</i>, 2011(S2):26-29(in Chinese).
[14]  马友光, 付涛涛, 朱存英. 微通道内气液两相流行为研究进展[J]. 化工进展, 2007, 26(8):1068-1074.
[15]  Ma Youguang, Fu Taotao, Zhu Cunying. Study on the behavior of gas-liquid two-phase flow in microchannels[J]. <i>Progress in Chemical Industry</i>, 2007, 26(8):1068-1074(in Chinese).
[16]  Chen H, Li J, Shum H C, et al. Breakup of double emulsions in constrictions[J]. <i>Soft Matter</i>, 2011, 7(6):2345-2347.
[17]  Li J, Chen H, Stone H A. Breakup of double emulsion droplets in a tapered nozzle[J]. <i>Langmuir the Acs Journal of Surfaces & Colloids</i>, 2011, 27(8):4324-4327.
[18]  Tanyeri M, Johnson-Chavarria E M, Schroeder C M. Hydrodynamic trap for single particles and cells[J]. <i>Applied Physics Letters</i>, 2010, 96(22):224101.
[19]  Stegeman Y W, Chesters A K, Fn V V D, et al. Breakup of (non-)newtonian droplets in a time-dependent elongational flow[C]//<i>Proceedings of Polymer Processing Society</i>. Hertogenbosch, The Netherlands, 1999:1-15.
[20]  Wang J T, Yu D M. Asymmetry of flow fields and asymmetric breakup of a droplet[J]. <i>Microfluidics and Nanofluidics</i>, 2015, 18(4):709-715.
[21]  Yu D M, Zheng M M, Wang J T, et al. Asymmetric breakup of a droplet in an axisymmetric extensional flow [J]. <i>Chinese Journal of Chemical Engineering, </i>2016, 24(1):63-70.
[22]  Wang J T, Wang X Y, Tai M, et al. Oriented shift and inverse of the daughter droplet due to the asymmetry of grand-daughter droplets of multiple emulsions in a symmetric flow field[J]. <i>Applied Physics Letters</i>, 2016, 108(2):021603.
[23]  Wang J T, Liu J X, Han J J, et al. Rheology investigation of the globule of multiple emulsions with complex internal structures through a boundary element method[J]. <i>Chemical Engineering Science</i>, 2013, 96(96):87-97.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133