全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

3自由度冗余驱动下肢康复并联机构的运动学优化设计
Kinematic Optimization of a Redundantly Actuated 3-DOF Parallel Mechanism for Lower-Limb Rehabilitation

DOI: 10.11784/tdxbz201706060

Keywords: 概念设计,尺度综合,并联机构,下肢康复
conceptual design
,dimensional synthesis,parallel mechanisms,lower-limb rehabilitation

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一种用于下肢康复的3自由度冗余驱动并联机构的概念设计和运动学优化.首先对该3自由度并联机构进行了简要介绍, 然后推导了其运动学正逆解的解析解.基于螺旋理论, 对该机构进行了广义雅可比分析, 通过对4种非冗余驱动情形的力/运动传递性能分析, 提出了一种用于评价该并联机构运动学性能的局部传递率指标.最后, 借助于遗传算法, 通过最大化局部传递率指标的全域平均值对该机构的设计变量进行了优化.运动学优化的结果表明, 本文所提出的并联机构在其工作空间内具有较好的力/运动传递性能.
The conceptual design and kinematic optimization of a redundantly actuated three degrees of freedom (DOF)parallel mechanism for lower-limb rehabilitation were studied in this paper. First,a brief description of the proposed 3-DOF parallel mechanism was presented. Then,the explicit expressions of inverse and forward kinematics of the mechanism were derived. By using screw theory,the generalized Jacobian analysis was carried out,based on which the force/motion transmissibility of the redundantly actuated parallel mechanism was investigated via four individual cases without actuation redundancy,leading to a local transmission index for the evaluation of kinematic performance of the proposed mechanism. Finally,the design variables of the mechanism were optimized by maximizing the mean value of the local transmission index with the aid of genetic algorithm(GA). The result of the kinematic optimization shows that the proposed parallel mechanism can achieve good force/motion transmissibility in its workspace

References

[1]  Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis [J]. <i>Journal of Rehabilitation Research and Development</i>, 2000, 37(6):693.
[2]  Araujo-Gómez P, Díaz-Rodriguez M, Mata V, et al. Design of a 3-UPS-RPU parallel robot for knee diagnosis and rehabilitation[C]//<i>ROMANSY<i> 21<i>-Robot Design, Dynamics and Control</i>. Berlin, Germany:Springer International Publishing, 2016:303-310.
[3]  Yoon J, Ryu J. A novel reconfigurable ankle/foot rehabili tation robot[C]//<i>Proceedings of the<i> 2005 <i>IEEE International Conference on Robotics and Automation</i>. Barcelona, Spain, 2005:2290-2295.
[4]  Ball R S. <i>A Treatise on the Theory of Screws</i>[M]. Cam Bridge:Cam Bridge University Press, 1998.
[5]  Wang Jinsong, Wu Chao, Liu Xinjun. Performance evaluation of parallel manipulators:Motion/force transmissibility and its index[J]. <i>Mechanism and Machine Theory</i>, 2010, 45(10):1462-1476.
[6]  Liu Xinjun, Chen Xiang, Nahon M. Motion/force constrainability analysis of lower-mobility parallel manipulators[J]. <i>Journal of Mechanisms and Robotics</i>, 2014, 6(3):031006.
[7]  Liu Haitao, Huang Tian, Kecskeméthy A, et al. A generalized approach for computing the transmission index of parallel mechanisms[J]. <i>Mechanism and Machine Theory</i>, 2014, 74:245-256.
[8]  Huang Tian, Yang Shuofei, Wang Manxin, et al. An approach to deter mining the unknown twist/wrench subspaces of lower mobility serial kinematic chains[J]. <i>Journal of Mechanisms and Robotics</i>, 2015, 7(3):031003-1-031003-9.
[9]  Díaz I, Gil J J, Sánchez E. Lower-limb robotic rehabilitation:Literature review and challenges[J]. <i>Journal of Robotics</i>, 2011, 2011(1):10. 1155/2011/759764.
[10]  丁敏, 李建民, 吴庆文, 等. 下肢步态康复机器人:研究进展及临床应用[J]. 中国组织工程研究, 2010, 14(35):6604-6607.
[11]  Ding Min, Li Jianmin, Wu Qingwen, et al. Research advances and clinical application of lower limb gait rehabilitation robots[J]. <i>Journal of Clinical Rehabilitative Tissue Engineering Research</i>, 2010, 14(35):6604-6607(in Chinese).
[12]  Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation[J]. <i>Mechatronics</i>, 2015, 31:132-145.
[13]  Kawamoto H, Sankai Y. Power assist system HAL-3 for gait disorder person[C]// <i>International Conference on Computers for Handicapped Persons.<i> Linz, Austria, 2002:196-203.
[14]  Schmitt C, Métrailler P. The Motion Maker?:A rehabili tation system combining an orthosis with closed-loop electrical muscle stimulation[C]//8<i>th Vienna International Workshop on Functional Electrical Stimulation</i>. Vienna, Austria, 2004:117-120.
[15]  Rastegarpanah A, Saadat M, Borboni A. Parallel robot for lower limb rehabilitation exercises[J]. <i>Applied Bionics And Biomechanics</i>, 2016, 2016:8584735.
[16]  曾达幸, 胡志涛, 侯雨雷, 等. 一种新型并联式解耦踝关节康复机构及其优化[J]. 机械工程学报, 2015, 51(9):1-9.
[17]  Zeng Daxing, Hu Zhitao, Hou Yulei, et al. Novel decoupled parallel mechanism for ankle rehabilitation and its optimization[J]. <i>Journal of Mechanical Engineering</i>, 2015, 51(9):1-9(in Chinese).
[18]  Wang Congzhe, Fang Yuefa, Guo Sheng, et al. Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation[J]. <i>Journal of Mechanisms and Robotics</i>, 2013, 5(4):041003-1-041003-11.
[19]  Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J]. <i>Journal of Mechanical Design</i>, 1991, 113(3):220-226.
[20]  Wang C, Fang Y, Guo S, et al. Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation[J]. <i>Robotica</i>, 2015, 33(2):366-384.
[21]  Merlet J P. Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. <i>Journal of Mechanical Design</i>, 2006, 128(1):199-206.
[22]  Liu Xinjun, Wu Chao, Xie Fugui. Motion/force transmission indices of parallel manipulators[J]. <i>Frontiers of Mechanical Engineering</i>, 2011, 6(1):89-91.</i></i></i></i></i></i></i></i>
[23]  Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury:A feasibility study [J]. <i>Brain Injury</i>, 2008, 22(7/8):625-632.
[24]  West R G. Powered Gait Orthosis and Method of Utilizing Same:US 6, 689, 075 B2[P]. 2004-02-10.
[25]  Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. <i>Journal of Rehabilitation Research And Development</i>, 2000, 37(6):701-708.
[26]  Peshkin M, Brown D A, Santos-Munné J J, et al. Kine Assist:A robotic overground gait and balance training device[C]// 9<i>th International Conference on Rehabilitation Robotics</i>. Chicago, IL, USA, 2005:241-246.
[27]  Bouri M, Stauffer Y, Schmitt C, et al. The walk trainer:A robotic system for walking rehabilitation [C]//<i>International Conference on Robotics and Biomimetics</i>. Kunming, China, 2006:1616-1621.
[28]  Goffer A. Gait-Locomotor Apparatus:US 7, 153, 242 B2[P]. 2006-12-26.
[29]  Jamwal P K, Xie S, Aw K C. Kinematic design optimiza tion of a parallel ankle rehabilitation robot using modified genetic algorithm[J]. <i>Robotics and Autonomous Systems</i>, 2009, 57(10):1018-1027.
[30]  刘海涛, 熊 坤, 贾昕胤, 等. 一种气动肌肉驱动的三自由度踝关节康复装置:CN 105943306 A[P]. 2016-09-21.
[31]  Liu Haitao, Xiong Kun, Jia Xinyin, et al. A 3-DOF Mechanism Actuated by Pneumatic Muscles for Ankle Rehabilitation:CN 105943306 A[P]. 2016-09-21(in Chinese).
[32]  Saglia J A, Tsagarakis N G, Dai J S, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J]. <i>Proceedings of the Institution of Mechanical Engineers</i>, <i>Part I</i>:<i>Journal of Systems and Control Engineering</i>, 2009, 223(1):53-70.
[33]  Mattacola C G, Dwyer M K. Rehabilitation of the ankle after acute sprain or chronic instability[J]. <i>Journal of Athletic Training</i>, 2002, 37(4):413.
[34]  Tsoi Y H, Xie S Q. Design and control of a parallel robot for ankle rehabilitation[J]. <i>International Journal of Intelligent Systems Technologies and Applications</i>, 2010, 8(1/2/3/4):100-113.
[35]  CGA Normative Gait Database[EB/OL]. http://www. clinicalgaitanalysis.com, 2017-05-25.
[36]  Huang Tian, Liu Haitao, Chetwynd D G. Generalized Jacobian analysis of lower mobility manipulators[J]. <i>Mechanism and Machine Theory</i>, 2011, 46(6):831-844.
[37]  Dai Jian S, Huang Zhen, Lipkin H. Mobility of overconstrained parallel mechanisms[J]. <i>Journal of Mechanical Design</i>, 2006, 128(1):220-229.
[38]  Joshi S A, Tsai L W. Jacobian analysis of limited-DOF parallel manipulators[C]//<i>ASME<i> 2002 <i>International Design Engineering Technical Conferences and Computers and Information in Engineering Conference</i>. Quebec, Canada, 2002:341-348.
[39]  Liu Haitao, Wang Manxin, Huang Tian, et al. A dual space approach for force/motion transmissibility analysis of lower mobility parallel manipulators[J]. <i>Journal of Mechanisms and Robotics</i>, 2015, 7(3):034504-1-034504-7.
[40]  Liu Xinjun, Wu Chao, Wang Jinsong. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators[J]. <i>Journal of Mechanisms and Robotics</i>, 2012, 4(4):041001-1-041001-9.
[41]  Huang Tian, Wang Manxin, Yang Shoufei, et al. Force/motion transmis sibility analysis of six degree of freedom parallel mechanisms[J]. <i>Journal of Mechanisms and Robotics</i>, 2014, 6(3):031010-1-031010-5.
[42]  Gan Dongming, Dai Jian S, Dias J, et al. Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion[J]. <i>Journal of Mechanisms and Robotics</i>, 2016, 8(5):051001.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133