全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于音速喷嘴固体内部温度分布的“热效应”分析
Analysis of Thermal Effects on Body Temperature Distribution of Sonic Nozzles

DOI: 10.11784/tdxbz201708012

Keywords: 音速喷嘴,热效应,温度分布,约束热膨胀,流出系数
sonic nozzle
,thermal effects,temperature distribution,constrained thermal expansion,discharge coefficient

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于音速喷嘴自身特殊的结构, 气体在喷嘴中膨胀降温, 低温气体与喷嘴固体内部结构的传热过程一方面会使喷嘴固体内部结构产生热膨胀现象, 另一方面会使热边界层发生变化, 称之为音速喷嘴“热效应”.作为“热效应”的基本特性, 音速喷嘴固体内部温度分布特性值得深入研究.首先结合音速喷嘴固体内部瞬态温度分布测量传感器及克里金空间插值算法, 获得了瞬态温度分布云图.实验结果表明, 喷嘴固体内部温度轴向分布呈现两端高中间低特点, 实验最大温降达14.2 ℃.接着分析了“热效应”对流量计量的影响.一方面, 从有限元分析角度研究了喷嘴固体内部结构约束膨胀对流动特性的影响, 对于喉径为2.15 mm的喷嘴, 将喷嘴固体内部结构约束膨胀简化为自由膨胀修正流出系数会引起较大误差.另一方面, 根据热边界层理论修正式计算发现, 当温降为10 ℃、喉部雷诺数为1.0×103时, 由热边界层变化引起的流出系数误差达到0.408% .
For the special structure of the sonic nozzle,the gas expands and its temperature drops greatly when flowing through the sonic nozzle. The heat transfer between the nozzle body and the fluid produces a series of complex effects on nozzle body and thermal boundary layer called “thermal effects”. As the essential characteristics of thermal effects,temperature distribution of the nozzle body was investigated further. Firstly,based on the temperature distribution sensors and Kriging’s interpolation method,the transient isothermal maps of nozzle body were obtained. It is found that the minimum temperature point appears in the middle of the nozzle and the temperature drop could be up to 14.2 ℃. Then,thermal effects on mass flow-rate of sonic nozzle were discussed from two aspects. The first one is constrained thermal expansion. Based on the FEA method,for the 2.15 mm nozzle,it is found that the constrained thermal deformation could not be simplified as free expansion to correct the discharge coefficient. The second one is thermal boundary layer. According to boundary layer theory,for typical body temperature drop of 10 ℃,the discharge coefficient at Re=1.0×103 will increase to 0.408% which cannot be ignored

References

[1]  International Standard Organization. ISO 9300. Measurement of gas flow by means of critical flow venture nozzles[S]. Switzerland:The International Organization for Standardization, 2005.
[2]  王超, 王刚, 丁红兵. 小喉径音速喷嘴”热效应”对流量影响的热边界层分析[J]. 机械工程学报, 2015, 51(16):164-170.
[3]  Wang Chao, Wang Gang, Ding Hongbing. Analysis of thermal boundary layer of thermal effects on flow characteristics of small sonic nozzles[J]. <i>Chinese Journal of Scientific Instrument</i>, 2015, 51(16):164-170(in Chinese).
[4]  Wright J D, Kang W, Zhang L, et al. Thermal Effects on Critical Flow Venturis[R]. 2015.
[5]  Magyari E, Keller B. Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls[J]. <i>European Journal of Mechanics-B/Fluids</i>, 2000, 19(1):109-122.
[6]  Shevchuk I V. A new type of the boundary condition allowing analytical solution of the thermal boundary layer equation[J]. <i>International Journal of Thermal Sciences</i>, 2005, 44(4):374-381.
[7]  Bognár G, Hriczó K, Bognár G. Similarity solution to a thermal boundary layer model of a non-Newtonian fluid with a convective surface boundary condition[J]. <i>Acta Polytechnica Hungarica</i>, 2011, 8(6):131-140.
[8]  Thomas M K, Richard W C. Some effects of thermal phenomena on the accuracy of critical flow Venturi based flow rate measurements[C]//<i>ASME Fluids Engineering Conference</i>. San Diego, CA, USA, 1996:7-11.
[9]  Bignell N, Choi Y M. Thermal effects in small sonic nozzles[J]. <i>Flow Measurement & Instrumentation</i>, 2002, 13(1/2):17-22.
[10]  ?nsal B, Park K A, Kayk?s?zl? H. Invertigations onthe effect of thermal inertia on sonic nozzle discharge coefficient[C]//<i>International Flow Measurement Conference</i>. Paris, France, 2013:259-262.
[11]  ?nsal B, ?al??kan U. Numerical assessment of discharge coefficient and wall temperature dependence of
[12]  discharge coefficient for critical-flow Venturi nozzles
[13]  [C]//<i>International Symposium on Fluid Flow Measurement</i>. Arlington, USA, 2016:11-18.
[14]  王超, 丁红兵, 刘琴. 正压法音速喷嘴标准装置气源系统设计[J]. 仪器仪表学报, 2012, 33(6):1364-1371.
[15]  Wang Chao, Ding Hongbing, Liu Qin. Design of the gas source system for sonic nozzle gas flow standard device based on positive pressure method[J]. <i>Chinese Journal of Scientific Instrument</i>, 2012, 33(6):1364-1371(in Chinese).
[16]  费兰, 杜世昌, 面向零件平面度误差估计的空间泛克里金插值建模[J]. 机械工程学报, 2014, 50(15):127-135.
[17]  Fei Lan, Du Shichang. Flatness error estimation based on universal kriging interpolation method[J]. <i>Chinese Journal of Mechanical Engineering</i>, 2014, 50(15):127-135(in Chinese).
[18]  Burrough P A. Development of intelligent geographical information systems[J]. <i>International Journal of Geographical Information Science</i>, 1992, 6(1):1-11.
[19]  Ding H B, Wang C, Wang G. Thermal effect on mass flow-rate of sonic nozzle[J]. <i>Thermal Science</i>, 2018, 22(1):247-262.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133