全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于三维土质模型的疏浚吹填工程土料调配优化与应用
Optimization Analysis and Application of Soil Allocation for Dredging and Filling Project Based on 3D Soil Model

DOI: 10.11784/tdxbz201707067

Keywords: 疏浚吹填,三维土质模型,土料动态调配,施工过程,优化平衡
dredging and filling
,3D soil model,dynamic soil allocation,construction process,optimum balancing

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高疏浚吹填工程土料调配方案设计效率, 优化疏浚吹填工程土料调配过程, 针对疏浚吹填工程土质情况复杂、土料调配过程施工工序多、施工环境复杂且极易受到外界自然条件的影响和限制的特点, 提出了基于三维土质模型的疏浚吹填工程土料调配优化方法.该方法采用基于不同数据来源的三维多精度建模方法, 实现了复杂水下土质条件的三维建模; 基于疏浚吹填工程施工工艺, 综合考虑了疏浚吹填土料在调配过程中所受到的复杂约束条件, 建立了疏浚吹填土料调配平衡优化的数学模型.工程实例应用表明, 该方法能有效对疏浚吹填工程土料调配过程进行分析, 与传统方法对比, 该方法能够确定更优的土料调配规划方案, 有效节约工程成本, 为疏浚吹填工程的调配方案设计提供了新的手段.
In order to improve the design efficiency of soil allocation scheme and optimize soil allocation process in dredging and filling engineering,considering complex soil condition,complex construction environment and a large number of construction processes and soil allocation process of dredging and filling engineering easily affected and restricted by the external natural conditions,a method of soil allocation optimization for dredging and filling engineering based on 3D soil model is proposed. A 3D multi precision modeling method based on different data sources is used and the 3D modeling of complex underwater soil conditions is realized in this method. Taking the complex constraint conditions in the process of soil allocation,a mathematical model of soil optimization allocation in dredging and filling engineering is established based on the construction technology of dredging and filling engineering. The application in practice shows that the soil allocation process in dredging and filling engineering can be effectively analyzed by this method. Compared with the traditional method,this method can determine a better plan of soil allocation,reduce engineering cost and provide a new method for the design of soil allocation in dredging and filling engineering

References

[1]  董志良, 刘嘉, 朱幸科, 等. 大面积围海造陆围堰工程关键技术研究及应用[J]. 水运工程, 2013(5):168-175.
[2]  Dong Zhiliang, Liu Jia, Zhu Xingke, et al. Key technology research and application of cofferdam construction in large-area reclamation project[J]. <i>Port & Waterway Engineering</i>, 2013(5):168-175(in Chinese).
[3]  Lemon A M, Jones N L. Building solid models from boreholes and user-defined cross-sections[J]. <i>Computers & Geosciences</i>, 2003, 29(5):547-555.
[4]  钟登华, 李明超. 水利水电工程地质三维建模与分析理论及实践[M]. 北京:中国水利水电出版社, 2006.
[5]  digital stratum model[J]. <i>Transactions of Tianjin Univer-sity</i>, 2012, 18(2):90-96.
[6]  中华人民共和国交通部. JTS116-4―2014 水运工程测量概算预算编制规定[S]. 北京:人民交通出版社, 2014.
[7]  周厚贵, 曹生荣, 申明亮. 土石方调配研究现状与发展方向[J]. 土木工程学报, 2009, 42(2):131-138.
[8]  Caumon G. Towards stochastic time-varying geological modeling[J]. <i>Mathematical Geosciences</i>, 2010, 42(5):555-569.
[9]  Hack R, Orlic B, Ozmutlu S, et al. Three and more dimensional modelling in geo-engineering[J]. <i>Bulletin of Engineering Geology and the Environment</i>, 2006, 65(2):143-153.
[10]  Zhong Denghua, Li Mingchao. <i>Theories and Applications of<i> 3<i>D Engineering Geological Modeling and Analysis to Hydraulic and Hydroelectric Projects</i>[M]. Beijing:China Water & Power Press, 2006(in Chinese).
[11]  钟登华, 郭享, 李明超, 等. 基于三维地质模型的地下洞室参数化设计与方案优选[J]. 天津大学学报, 2007, 40(5):519-524.
[12]  Zhong Denghua, Guo Xiang, Li Mingchao, et al. Parametric design and schemes optimization for underground structure based on 3D geological model[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2007, 40(5):519-524(in Chinese).
[13]  缪正建, 钟登华, 李明超, 等. 疏浚工程土质三维建模与可视化分析系统[J]. 河海大学学报:自然科学版, 2013, 41(4):342-347.
[14]  Miao Zhengjian, Zhong Denghua, Li Mingchao, et al. Development of three-dimensional modeling and visual analysis system for soil texture in dredging engineering [J]. <i>Journal of Hohai University</i>:<i>Natural Sciences</i>, 2013, 41(4):342-347(in Chinese).
[15]  曹星, 陈元明, 董建军, 等. 吹填法[M]. 北京:中国水利水电出版社, 2006.
[16]  中华人民共和国交通部. JTJ319―99疏浚工程技术规范[S]. 北京:人民交通出版社, 1999.
[17]  唐建中. 绞吸式挖泥船疏浚作业优化与控制研究 [D]. 杭州:浙江大学机械与能源工程学院, 2007.
[18]  Miao Zhengjian, Li Mingchao, Zhong Denghua. Automatic generation method of geological cross-sections in dredging engineering based on 3D solid NURBS models [J]. <i>Transactions of Tianjin University</i>, 2012, 18(6):393-400.
[19]  中华人民共和国交通部. JTS115―2014水运工程建设项目投资估算编制规定[S]. 北京:人民交通出版社, 2014.
[20]  Zhou Hougui, Cao Shengrong, Shen Mingliang. Current status of research on earth-muck allocation and direction of development[J]. <i>China Civil Engineering Journal</i>, 2009, 42(2):131-138(in Chinese).
[21]  Moreb A A. Linear programming model for finding optimal roadway grades that minimize earthwork cost[J]. <i>European Journal of Operational Research</i>, 1996, 93(1):148-154.
[22]  钟登华, 胡程顺, 张静. 高土石坝施工计算机一体化仿真[J]. 天津大学学报, 2004, 37(10):872-877.
[23]  Zhong Denghua, Hu Chengshun, Zhang Jing. Computer integration simulation for high rockfill dam construction[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2004, 37(10):872-877(in Chinese).
[24]  胡程顺, 钟登华, 张静, 等. 土石方动态调配模型与可视化研究[J]. 中国工程科学, 2003, 5(12):73-79.
[25]  Hu Chengshun, Zhong Denghua, Zhang Jing, et al. Research on model and visualization of dynamic allocation of earth-rock[J]. <i>Engineering Sciences</i>, 2003, 5(12):73-79(in Chinese).
[26]  杨瑞敏, 丁建文, 周志彦, 等. 堆场疏浚泥颗粒分选特性初步量化方法[J]. 水利水电科技进展, 2017, 37(3):89-94.
[27]  Yang Ruimin, Ding Jianwen, Zhou Zhiyan, et al. Preliminary quantitative method for grain sorting behaviors of dredged slurries in reclaimed land[J]. <i>Advances in Science and Technology of Water Resources</i>, 2017, 37(3):89-94(in Chinese).
[28]  王凯, 陈惠君, 郭彬. 最小元素法在吹填排距优化管理中的应用[J]. 水运工程, 2016(11):188-192.
[29]  Wang Kai, Chen Huijun, Guo Bin. Application of minimum-element method in optimization of pipeline arrangement for dredging & reclamation works[J]. <i>Port & Waterway Engineering</i>, 2016(11):188-192(in Chinese).
[30]  曾梦秋. 基于钻孔数据的三维地层模型建立及工程应用研究[D]. 武汉:武汉工程大学资源与土木工程学院, 2014.
[31]  Zeng Mengqiu. Research on Construction and Engineering Application of 3D Stratum Model Based on Drill Data[D]. Wuhan:School of Resources and Civil Engineering, Wuhan Institute of Technology, 2014(in Chinese).
[32]  Li Mingchao, Han Yanqing, Miao Zhengjian, et al. Alternative 3D modeling approaches based on complex multi-source geological data interpretation[J]. <i>Transactions of Tianjin University</i>, 2014, 20(1):7-14.
[33]  Cao Xing, Chen Yuanming, Dong Jianjun, et al. <i>Method of Dredging and Reclamation</i>[M]. Beijing:China Water & Power Press, 2006(in Chinese).
[34]  Ministry of Communications of the People′s Republic of China. JTJ319―99 Technical Specification for Dredging Engineering[S]. Beijing:People’s Transportation Press, 1999(in Chinese).
[35]  Tang Jianzhong. Research on Optimization and Control of Dredging Operations for Cutter Suction Dredgers[D]. Hangzhou:School of Mechanical and Energy Engineer-ing, Zhejiang University, 2007(in Chinese).
[36]  Miao Zhengjian, Li Mingchao, Zhong Denghua. Numerical calculation of channel dredging volume using 3D
[37]  Ministry of Communications of the People’s Republic of China. JTS116-4―2014 Provision of Budgetary Budget for Water Transportation Engineering Survey[S]. Beijing:People’s Transportation Press, 2014(in Chinese).
[38]  中华人民共和国交通部. JTS273―2014水运工程测量定额[S]. 北京:人民交通出版社, 2014.
[39]  Ministry of Communications of the People’s Republic of China. JTS273―2014 Measurement Quota for Water Transportation Engineering[S]. Beijing:People′s Transportation Press, 2014(in Chinese).
[40]  Ministry of Communications of the People’s Republic of China. JTS115―2014 Regulation of Investment Estimation in Water Transportation Engineering Construction Project[S]. Beijing:People’s Transportation Press, 2014(in Chinese).</i></i>

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133