全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stark and Kerr Effects on the Dynamics of Moving N-Level Atomic System

DOI: 10.4236/jqis.2019.91003, PP. 22-40

Keywords: QFI, Kerr Effect, Stark Effect, N-Level Atomic System

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have investigated numerically the dynamics of quantum Fisher information (QFI) and quantum entanglement (QE) for N-level atomic system interacting with a coherent field in the presence of Kerr (linear and non-linear medium) and Stark effects. It is observed that the Stark and Kerr effects play a prominent role during the time evolution of the quantum system. The evolving quantum Fisher information (QFI) is noted as time grows under the non-linear Kerr medium contrary to the QE for higher dimensional systems. The effect of non-linear Kerr medium is greater on the QE as we increase the value of Kerr parameter. However, QFI and QE maintain their periodic nature under atomic motion. On the other hand, linear Kerr medium has no prominent effects on the dynamics of N-level atomic system. Furthermore, it has been observed that QFI and QE decay soon under the influence of Stark effect. In short, the N-level atomic system is found prone to the change of the Kerr medium and Stark effect for higher dimensional systems.

References

[1]  Giovannetti, V., Lloyd, S. and Maccone, L. (2004) Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science, 306, 1330-1336.
https://doi.org/10.1126/science.1104149
[2]  Dowling, J. (2008) Quantum Optical Metrology—The Lowdown on High-N00N States. Contemporary Physics, 49, 125-143.
https://doi.org/10.1080/00107510802091298
[3]  Higgins, B.L., Berry, D.W., Bartlett, S.D., Wiseman, H.M. and Pryde, G.J. (2007) Entanglement-Free Heisenberg-Limited Phase Estimation. Nature, 450, 393-396.
https://doi.org/10.1038/nature06257
[4]  Helstrom, C.W. (1976) Quantum Detection and Estimation Theory. Academic Press, New York.
[5]  Holevo, A.S. (1982) Statistical Structure of Quantum Theory. North-Holland, Amsterdam.
[6]  Braunstein, S.L. and Caves, C.M. (1994) Statistical Distance and the Geometry of Quantum States. Physical Review Letters, 72, 3439.
https://doi.org/10.1103/PhysRevLett.72.3439
[7]  Braunstein, S.L., Caves, C.M. and Milburn, G.J. (1996) Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance. Annals of Physics, 247, 135-173.
https://doi.org/10.1006/aphy.1996.0040
[8]  Hubner, M. (1992) Explicit Computation of the Bures Distance for Density Matrices. Physics Letters A, 163, 239-242.
https://doi.org/10.1016/0375-9601(92)91004-B
[9]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777.
https://doi.org/10.1103/PhysRev.47.777
[10]  Schrdinger, E. (1935) Discussion of Probability Relations between Separated Systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555-563.
https://doi.org/10.1017/S0305004100013554
[11]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Information. Cambridge University Press, Cambridge.
[12]  Bell, J. (1964) On the Einstein Podolsky Rosen paradox. Physics, 1, 195.
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[13]  Clauser, J., Horne, M., Shimony, A. and Holt, R. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880.
https://doi.org/10.1103/PhysRevLett.23.880
[14]  Huver, S.D., Wildfeuer, C.F. and Dowling, J.P. (2008) Entangled Fock States for Robust Quantum Optical Metrology, Imaging, and Sensing. Physical Review A, 78, Article ID: 063828.
https://doi.org/10.1103/PhysRevA.78.063828
[15]  Berrada, K. (2013) Quantum Metrology with SU(1,1) Coherent States in the Presence of Nonlinear Phase Shifts. Physical Review A, 88, Article ID: 013817.
https://doi.org/10.1103/PhysRevA.88.013817
[16]  Amico, L., Fazio, R., Osterloh, A. and Vedral, V. (2008) Entanglement in Many-Body Systems. Reviews of Modern Physics, 80, 517-576.
https://doi.org/10.1103/RevModPhys.80.517
[17]  Nieuwenhuizen, T.M., Pomb, C., Furtado, C., et al. (2014) Quantum Foundations and Open Quantum Systems. World Scientific, Singapore.
https://doi.org/10.1142/9238
[18]  Jaynes, E.T. and Cummings, F.W. (1963) Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proceedings of the IEEE, 51, 89-109.
https://doi.org/10.1109/PROC.1963.1664
[19]  Meschede, D. (1992) Cavity Quantum Electrodynamics. Reports on Progress in Physics, 211, 201-250.
https://doi.org/10.1016/0370-1573(92)90110-L
[20]  Hansch, T.W. and Walther, H. (1999) Laser Spectroscopy and Quantum Optics. Reviews of Modern Physics, 71, S242-S252.
https://doi.org/10.1103/RevModPhys.71.S242
[21]  Rempe, G., Walther, H. and Klein, N. (1987) Observation of Quantum Collapse and Revival in a One-Atom Maser. Physical Review Letters, 58, 353-356.
https://doi.org/10.1103/PhysRevLett.58.353
[22]  Buck, B. and Sukumar, C.V. (1981) Exactly Soluble Model of Atom-Phonon Coupling Showing Periodic Decay and Revival. Physics Letters A, 81, 132-135.
https://doi.org/10.1016/0375-9601(81)90042-6
[23]  Sukumar, C.V. and Buck, B. (1981) Multi-Phonon Generalisation of the Jaynes-Cummings Model. Physics Letters A, 83, 211-213.
https://doi.org/10.1016/0375-9601(81)90825-2
[24]  Yurke, B. and Stoler, D. (1986) Generating Quantum Mechanical Superpositions of Macroscopically Distinguishable States via Amplitude Dispersion. Physical Review Letters, 57, 13-16.
https://doi.org/10.1103/PhysRevLett.57.13
[25]  Gora, P. and Jedrzejek, C. (1992) Nonlinear Jaynes-Cummings Model. Physical Review A, 45, 6816.
https://doi.org/10.1103/PhysRevA.45.6816
[26]  Buzek, V. and Jex, I. (1990) Dynamics of a Two-Level Atom in a Kerr-Like Medium. Optics Communications, 78, 425-435.
https://doi.org/10.1016/0030-4018(90)90340-Y
[27]  Obada, A.-S.F., Eied, A.A. and Al-Kader Abd, G.M. (2008) Treatment of the Emission and Absorption Spectra for a Λ-Type Three-Level Atom Driven by a Single-Mode Field with Nonlinearities. Laser Physics Letters, 18, 1164-1175.
https://doi.org/10.1088/0953-4075/39/7/001
[28]  Abdalla, M.S., Krepelka, J. and Perina, J.J. (2006) Effect of Kerr-Like Medium on a Two-Level Atom in Interaction with Bimodal Oscillators. Journal of Physics B: Atomic, Molecular and Optical Physics, 39, 1563-1577.
https://doi.org/10.1088/0953-4075/39/7/001
[29]  Lai, Y.Z., Li, W.D. and Liang, J.Q. (1999) Adiabatic Transfer of Atomic Level-Occupation Probability Induced by Kerr-Like Medium. Optics Communications, 160, 240-244.
https://doi.org/10.1080/09500340108240888
[30]  Berlin, G. and Aliaga, J.J. (2001) Quantum Dynamical Properties of a Two-Photon Non Linear Jaynes-Cummings Model. Journal of Modern Optics, 48, 1819-1829.
https://doi.org/10.1080/09500340108240888
[31]  Schlicher, R.R. (1989) Jaynes-Cummings Model with Atomic Motion. Optics Communications, 70, 97-102.
https://doi.org/10.1016/0030-4018(89)90276-9
[32]  Liu, J.-R. and Wang, Y.-Z. (1996) Motion-Quantized Jaynes-Cummings Models with an Arbitrary Intensity-Dependent Medium. Physical Review A, 54, 2326.
https://doi.org/10.1103/PhysRevA.54.2326
[33]  Liu, J.-R. and Wang, Y.-Z. (1996) Velocity-Selective Population and Quantum Collapse-Revival Phenomena of the Atomic Motion for a Motion-Quantized Raman-Coupled Jaynes-Cummings Model. Physical Review A, 54, 2444-2450.
https://doi.org/10.1103/PhysRevA.54.2444
[34]  Abdel-Wahab, N.H., Amin, M.E. and Mourad, M.F. (2002) Influence of the Stark Shift and the Detuning Parameters on the Entanglement Degree in a Two-Mode Coupling System. Journal of the Physical Society of Japan, 71, 2129-2132.
https://doi.org/10.1143/JPSJ.71.2129
[35]  Zait, R.A. and Abdel-Wahab, N.H. (2002) Nonresonant Interaction between a Three-Level Atom with a Momentum Eigenstate and a One-Mode Cavity Field in a Kerr-Like Medium. Journal of Physics B, 35, 3701-3712.
https://doi.org/10.1088/0953-4075/35/17/307
[36]  Zait, R.A. and Abdel-Wahab, N.H. (2002) Influence of Detuning and Kerr-Like Medium on the Interaction of a Three-Level Atom with Squeezed Two-Mode Cavity Field. Physica Scripta, 66, 452.
https://doi.org/10.1238/Physica.Regular.066a00425
[37]  Abdel-Wahab, N.H. (2005) N-Level Atom in a Momentum Eigenstate Interacting with an (N-1) Mode Cavity Field. Physica Scripta, 71, 132-135.
https://doi.org/10.1238/Physica.Regular.071a00132
[38]  Abdel-Wahab, N.H., Amin, M.E. and Taha, M. (2006) One-Mode Interaction with a Four-Level Atom in a Momentum Eigenstate. Fizika A, 2, 113-124.
[39]  Abdel-Wahab, N.H. (2008) A Moving Four-Level N-Type Atom Interacting with Cavity Fields. Journal of Physics B: Atomic Molecular and Optical Physics, 41, Article ID: 105502.
https://doi.org/10.1088/0953-4075/41/10/105502
[40]  Fan, A. and Wang, Z.-W. (1994) Phase, Coherence Properties and the Numerical Analysis of the Field in the Nonresonant Jaynes: Cummings Model. Physical Review A, 49, 1509.
https://doi.org/10.1103/PhysRevA.49.1509
[41]  Haken, H. and Wolf, H.C. (2004) Atomund Quantenphysik, Einfuhrung in Die Experimentellen und Theoretischen Grundlagen. 8th Edition, Springer, Berlin.
[42]  Alsing, P., Guo, D.-S. and Carmichael, H.J. (1992) Dynamic Stark Effect for the Jaynes-Cummings System. Physical Review A, 45, 5135-5143.
https://doi.org/10.1103/PhysRevA.45.5135
[43]  Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M. and Schoelkopf, R.J. (2004) Strong Coupling of a Single Photon to a Superconducting Qubit Using Circuit Quantum Electrodynamics. Nature, 431, 162-167.
https://doi.org/10.1038/nature02851
[44]  Alsing, P. and Zubairy, M.S. (1987) Collapse and Revivals in a Two-Photon Absorption Process. Journal of the Optical Society of America B, 4, 177-184.
https://doi.org/10.1364/JOSAB.4.000177
[45]  Swain, S. (1994) Systematic Method for Deriving Effective Hamiltonians. Physical Review A, 49, 2816.
https://doi.org/10.1103/PhysRevA.49.2816
[46]  Brune, M., Raimond, J.M. and Haroche, S. (1987) Theory of the Rydberg-Atom Two-Photon Micromaser. Physical Review A, 35, 154-163.
https://doi.org/10.1103/PhysRevA.35.154
[47]  Agarwal, G.S. and Puri, R.R. (1986) Exact Quantum-Electrodynamics Results for Scattering, Emission, and Absorption from a Rydberg Atom in a Cavity with Arbitrary Q. Physical Review A, 33, 1757-1764.
https://doi.org/10.1103/PhysRevA.33.1757
[48]  Obada, A.S.F., Ahmed, M.M.A., Khalil, E.M. and Ali, S.I. (2013) Entangled Two Two-Level Atoms Interacting with a Cavity Field in the Presence of the Stark Shift Terms. Optics Communications, 287, 215-223.
https://doi.org/10.1016/j.optcom.2012.08.091
[49]  Jamal Anwar, S., Ramzan, M. and Khan, K. (2017) Dynamics of Entanglement and Quantum Fisher Information for N-Level Atomic System under Intrinsic Decoherence. Quantum Information Processing, 16, 142.
https://doi.org/10.1007/s11128-017-1589-8
[50]  Berrada, K., Abdel-Khalek, S. and Obada, A.S.F. (2012) Quantum Fisher Information for a Qubit System Placed Inside a Dissipative Cavity. Physics Letters A, 376, 1412-1416.
https://doi.org/10.1016/j.physleta.2012.03.023
[51]  Berrada, K., Abdel-Khalek, S. and Raymond Ooi, C.H. (2012) Quantum Metrology with Entangled Spin-Coherent States of Two Modes. Physical Review A, 86, Article ID: 033823.
https://doi.org/10.1103/PhysRevA.86.033823
[52]  Wootters,W.K. (2001) Entanglement of Formation and Concurrence. Quantum Information and Computation, 1, 27-44.
[53]  Lu, X., Wang, X. and Sun, C.P. (2010) Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems. Physical Review A, 82, Article ID: 042103.
https://doi.org/10.1103/PhysRevA.82.042103
[54]  Barndorff-Nielsen, O.E., Gill, R.D. and Jupp, P.E. (2003) On Quantum Statistical Inference. Journal of the Royal Statistical Society Series B, 65, 775-816.
https://doi.org/10.1111/1467-9868.00415
[55]  Abdel-Khalek, S. (2011) Dynamics of a Moving Five-Level Atom Interacting with Cavity Fields. Journal of Russian Laser Research, 32, 86-93.
https://doi.org/10.1007/s10946-011-9192-4
[56]  Abdel-Khalek, S. (2013) Quantum Fisher Information for Moving Three-Level Atom. Quantum Information Processing, 12, 3761-3769.
https://doi.org/10.1007/s11128-013-0622-9
[57]  Enaki, N.A. and Ciobanu, N. (2008) Quantum Trapping Conditions for Three-Level Atom Flying through Bimodal Cavity Field. Journal of Modern Optics, 55, 589-598.
https://doi.org/10.1080/09500340701721868

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133