全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tribonacci Quantum Cosmology: Optimal Non-Antipodal Spherical Codes & Graphs

DOI: 10.4236/jqis.2019.91004, PP. 41-97

Keywords: Deep Learning, Hubble, General Relativity, Spacetime, Particle Physics, Darwinism

Full-Text   Cite this paper   Add to My Lib

Abstract:

Degrees of freedom in deep learning, quantum cosmological, information processing are shared and evolve through a self-organizing sequence of optimal \"\", non-antipodal \"\", spherical codes, \"\". This Tribonacci Quantum Cosmology model invokes four \"\" codes: 1-vertex, 3-vertex (great circle equilateral triangle), 4-vertex (spherical tetrahedron) and 24-vertex (spherical snub cube). The vertices are einselected centres of coherent quantum information that maximise their minimum separation and survive environmental decoherence on a noisy horizon. Twenty-four 1-vertex codes, \"\", self-organize into eight 3-vertex codes, \"\", which self-organize into one 24-vertex code, \"\", isomorphic to dimensions of 24-spacetime and 12(2) generators of SU(5). Snub cubical 24-vertex code chirality causes matter asymmetries and the corresponding graph-stress has normal and shear components relating to respective sides of Einstein’s tensor equivalence \"\". Cosmological scale factor and Hubble parameter evolution is formalized as an Ostwald-coarsening function of time, scaled by the tribonacci constant (T≈1.839) property of the snub cube. The 24-vertex code coarsens to a broadband 4-vertex code, isomorphic to emergent 4-spacetime and antecedent structures in 24-spacetime metamorphose to familiar 4-spacetime forms. Each of the coarse code’s 4-vertices has 6-fold parallelized degrees of freedom (conserved from the 24-vertex code), \"\", so 4-spacetime is properly denoted 4(6)-spacetime. Cosmological parameters are formalized: CMB

References

[1]  McCoss, A. (2016) Quantum Deep Learning Triuniverse. Journal of Quantum Information Science, 6, 223-248.
https://doi.org/10.4236/jqis.2016.64015
[2]  McCoss, A. (2017) Agency of Life, Entropic Gravity and Phenomena Attributed to “Dark Matter”. Journal of Quantum Information Science, 7, 67-75.
https://doi.org/10.4236/jqis.2017.72007
[3]  McCoss, A. (2017) Lithium Quantum Consciousness. Journal of Quantum Information Science, 7, 125-139.
https://doi.org/10.4236/jqis.2017.74010
[4]  McCoss, A. (2018) It from Qutrit: Braided Loop Metaheuristic. Journal of Quantum Information Science, 8, 78-105.
https://doi.org/10.4236/jqis.2018.82006
[5]  Wheeler J.A. (1988) World as System Self-Synthesized by Quantum Networking. In: Agazzi, E., Ed., Probability in the Sciences, Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), Vol. 201, Springer, Dordrecht, 103-129.
https://doi.org/10.1007/978-94-009-3061-2_7
[6]  Conway, J.H. and Sloane, N.J.A. (2013) Sphere Packings, Lattices and Groups, Vol. 290. Springer Science & Business Media, New York.
[7]  Tersoff, J., Teichert, C. and Lagally, M.G. (1996) Self-Organization in Growth of Quantum Dot Superlattices. Physical Review Letters, 76, 1675.
https://doi.org/10.1103/PhysRevLett.76.1675
[8]  Murray, C.B., Kagan, C.R. and Bawendi, M.G. (1995) Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science, 270, 1335-1338.
https://doi.org/10.1126/science.270.5240.1335
[9]  Konopka, T., Markopoulou, F. and Smolin, L. (2006) Quantum Graphity.
https://arxiv.org/abs/hep-th/0611197
[10]  Markopoulou, F. (2009) Space Does Not Exist, So Time Can.
https://arxiv.org/abs/0909.1861
[11]  Markopoulou, F. (2012) The Computing Spacetime. In: Cooper, S.B., Dawar, A. and Lowe, B., Eds., How the World Computes. CiE 2012. Lecture Notes in Computer Science, Vol. 7318, Springer, Berlin, Heidelberg, 472-484.
https://doi.org/10.1007/978-3-642-30870-3_48
[12]  Zenczykowski, P. (2018) Quarks, Hadrons, and Emergent Spacetime. Foundations of Science, 1-19.
https://doi.org/10.1007/s10699-018-9562-2
[13]  Mikhalkin, G. (2006) Tropical Geometry and Its Applications.
https://arxiv.org/abs/math/0601041
[14]  Maclagan, D. and Sturmfels, B. (2015) Introduction to Tropical Geometry, Vol. 161. American Mathematical Society, Providence.
https://doi.org/10.1090/gsm/161
[15]  Finster, F. and Schiefeneder, D. (2013) On the Support of Minimizers of Causal Variational Principles. Archive for Rational Mechanics and Analysis, 210, 321-364.
https://doi.org/10.1007/s00205-013-0649-1
[16]  Schiefeneder, D. (2011) On Minimizers of Causal Variational Principles. Ph.D. Thesis, Universitat Regensburg, Regensburg.
https://epub.uni-regensburg.de/21629/1/dissertation.pdf
[17]  Finster, F., Grotz, A. and Schiefeneder, D. (2012) Causal Fermion Systems: A Quantum Space-Time Emerging from an Action Principle. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Springer, Basel, 157-182.
https://doi.org/10.1007/978-3-0348-0043-3_9
[18]  Baez, J. and Huerta, J. (2010) The Algebra of Grand Unified Theories. Bulletin of the American Mathematical Society, 47, 483-552.
https://doi.org/10.1090/S0273-0979-10-01294-2
[19]  Baez, J. (2008) My Favourite Numbers: 24. The Rankine Lectures. Glasgow Mathematical Journal Trust.
https://www.youtube.com/watch?v=vzjbRhYjELo
[20]  Weisstein, E.W., Snub Cube. From MathWorld. A Wolfram Web Resource.
http://mathworld.wolfram.com/SnubCube.html
[21]  Martini, B.W.H. (2002) On the Chiral Archimedean Solids. Contributions to Algebra and Geometry, 43, 121-133.
http://emis.ams.org/journals/BAG/vol.43/no.1/b43h1wem.pdf
[22]  Florek, W. (2018) A Class of Generalized Tribonacci Sequences Applied to Counting Problems. Applied Mathematics and Computation, 338, 809-821.
https://doi.org/10.1016/j.amc.2018.06.014
[23]  Basu, M. and Das, M. (2014) Tribonacci Matrices and a New Coding Theory. Discrete Mathematics, Algorithms and Applications, 6, Article ID: 1450008.
https://doi.org/10.1142/S1793830914500086
[24]  Cerda-Morales, G. (2018) The Unifying Formula for All Tribonacci-Type Octonions Sequences and their Properties.
https://arxiv.org/abs/1807.04140
[25]  Cerda-Morales, G. (2017) On a Generalization for Tribonacci Quaternions. Mediterranean Journal of Mathematics, 14, 239.
https://doi.org/10.1007/s00009-017-1042-3
[26]  Günaydin, M. and Gürsey, F. (1973) Quark Structure and Octonions. Journal of Mathematical Physics, 14, 1651-1667.
https://doi.org/10.1063/1.1666240
[27]  Dixon, G.M. (2013) Division Algebras: Octonions Quaternions Complex Numbers and the Algebraic Design of Physics, Vol. 290. Springer Science & Business Media, New York.
[28]  Furey, C. (2016) Standard Model Physics from an Algebra?
https://arxiv.org/abs/1611.09182
[29]  Furey, C. (2015) Charge Quantization from a Number Operator. Physics Letters B, 742, 195-199.
https://doi.org/10.1016/j.physletb.2015.01.023
[30]  Furey, C. (2014) Generations: Three Prints, in Colour. Journal of High Energy Physics, 2014, 46.
https://doi.org/10.1007/JHEP10(2014)046
[31]  Fermi-LAT Collaboration (2018) A Gamma-Ray Determination of the Universe’s Star Formation History. Science, 362, 1031-1034.
https://doi.org/10.1126/science.aat8123
[32]  Croom, S.M., Schade, D., Boyle, B.J., Shanks, T., Miller, L. and Smith, R.J. (2004) Gemini Imaging of QSO Host Galaxies at z~2. The Astrophysical Journal, 606, 126-138.
[33]  Glikman, E., Simmons, B., Mailly, M., Schawinski, K., Urry, C.M. and Lacy, M. (2015) Major Mergers Host the Most-Luminous Red Quasars at z~2: A Hubble Space Telescope WFC3/IR Study. The Astrophysical Journal, 806, 218.
[34]  Hand, N., Leauthaud, A., Das, S., Sherwin, B.D., Addison, G., Bond, J.R., et al. (2015) First Measurement of the Cross-Correlation of CMB Lensing and Galaxy Lensing. Physical Review D, 91, Article ID: 062001.
https://doi.org/10.1103/PhysRevD.91.062001
[35]  Nath, B.B., Madau, P. and Silk, J. (2006) Cosmic Rays, Lithium Abundance and Excess Entropy in Galaxy Clusters. Monthly Notices of the Royal Astronomical Society: Letters, 366, L35-L39.
https://doi.org/10.1111/j.1745-3933.2005.00127.x
[36]  Abramowski, A., Aharonian, F., Benkhali, F.A., Akhperjanian, A.G., Angüner, E.O., Backes, M., et al. (2016) Acceleration of Petaelectronvolt Protons in the Galactic Centre. Nature, 531, 476-479.
https://doi.org/10.1038/nature17147
[37]  Suzuki, T.K. and Inoue, S. (2002) Cosmic-Ray Production of 6Li by Structure Formation Shocks in the Early Milky Way: A Fossil Record of Dissipative Processes during Galaxy Formation. The Astrophysical Journal, 573, 168-173.
[38]  Fields, B.D. and Prodanovic, T. (2005) 6Li and Gamma Rays: Complementary Constraints on Cosmic-Ray History. The Astrophysical Journal, 623, 877-888.
[39]  Hawking, S. (1996) Life in the Universe. Public Lecture.
http://www.hawking.org.uk/life-in-the-universe.html
[40]  Forbes, D.A., Pastorello, N., Romanowsky, A.J., Usher, C., Brodie, J.P. and Strader, J. (2015) The SLUGGS Survey: Inferring the Formation Epochs of Metal-Poor and Metal-Rich Globular Clusters. Monthly Notices of the Royal Astronomical Society, 452, 1045-1051.
https://doi.org/10.1093/mnras/stv1312
[41]  Wang, F.Y. and Dai, Z.G. (2006) Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae. Chinese Journal of Astronomy and Astrophysics, 6, 561-571.
https://doi.org/10.1088/1009-9271/6/5/08
[42]  Cunha, J.V. and Lima, J.A.S. (2008) Transition Redshift: New Kinematic Constraints from Supernovae. Monthly Notices of the Royal Astronomical Society, 390, 210-217.
https://doi.org/10.1111/j.1365-2966.2008.13640.x
[43]  Miyatake, H., Madhavacheril, M.S., Sehgal, N., Slosar, A., Spergel, D.N., Sherwin, B. and van Engelen, A. (2017) Measurement of A Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing. Physical Review Letters, 118, Article ID: 161301.
https://doi.org/10.1103/PhysRevLett.118.161301
[44]  Barrau, A., Rovelli, C. and Vidotto, F. (2014) Fast Radio Bursts and White Hole Signals. Physical Review D, 90, Article ID: 127503.
https://doi.org/10.1103/PhysRevD.90.127503
[45]  Rovelli, C. and Vidotto, F. (2014) Planck Stars. International Journal of Modern Physics D, 23, Article ID: 1442026.
https://doi.org/10.1142/S0218271814420267
[46]  Cai, Y.F., Tong, X., Wang, D.G. and Yan, S.F. (2018) Primordial Black Holes from Sound Speed Resonance during Inflation. Physical Review Letters, 121, Article ID: 081306.
https://arxiv.org/abs/1805.03639
https://doi.org/10.1103/PhysRevLett.121.081306
[47]  Horváth, I., Hakkila, J. and Bagoly, Z. (2014) Possible Structure in the GRB Sky Distribution at Redshift Two. Astronomy & Astrophysics, 561, L12-L15.
https://doi.org/10.1051/0004-6361/201323020
[48]  Horváth, I., Bagoly, Z., Hakkila, J. and Tóth, L.V. (2015) New Data Support the Existence of the Hercules-Corona Borealis Great Wall. Astronomy & Astrophysics, 584, A48-A55.
https://doi.org/10.1051/0004-6361/201424829
[49]  Ji, Z., Giavalisco, M., Williams, C.C., Faber, S.M., Ferguson, H.C., Guo, Y., et al. (2018) Evidence of Environmental Quenching at Redshift z~2.
https://arxiv.org/abs/1806.04142
[50]  Kashlinsky, A. (2016) LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies. The Astrophysical Journal Letters, 823, L25.
https://doi.org/10.3847/2041-8205/823/2/L25
[51]  Kirshner, R.P. (2002) The Extravagant Universe: Exploding Stars, Dark Energy and the Accelerating Cosmos. Princeton University Press, Princeton, 71.
https://press.princeton.edu/titles/7327.html
[52]  Madau, P. and Dickinson, M. (2014) Cosmic Star-Formation History. Annual Review of Astronomy and Astrophysics, 52, 415-486.
https://doi.org/10.1146/annurev-astro-081811-125615
[53]  Prialnik, D. (2000) An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press, Cambridge.
http://www.cambridge.org/9780521866040
[54]  Risaliti, G. and Lusso, E. (2019) Cosmological Constraints from the Hubble Diagram of Quasars at High Redshifts. Nature Astronomy, 3, 272-277.
[55]  Zel’dovich, Y.B. and Novikov, I.D. (1966) The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Astronomicheskii Zhurnal, 43, 758.
http://adsabs.harvard.edu/full/1967SvA....10..602Z
[56]  Hawking, S. (1971) Gravitationally Collapsed Objects of Very Low Mass. Monthly Notices of the Royal Astronomical Society, 152, 75-78.
https://doi.org/10.1093/mnras/152.1.75
[57]  Radulescu, A. and Adams, P. (2013) Hebbian Crosstalk and Input Segregation. Journal of Theoretical Biology, 337, 133-149.
https://doi.org/10.1016/j.jtbi.2013.08.004
[58]  ‘t Hooft, G.T. (2018) Time, the Arrow of Time, and Quantum Mechanics.
https://arxiv.org/abs/1804.01383
[59]  Donoghue, J.F., Golowich, E. and Holstein, B.R. (2014) Dynamics of the Standard Model, Vol. 35. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511803512
[60]  Georgi, H. (2018) Lie Algebras in Particle Physics: From Isospin to Unified Theories. CRC Press, Boca Raton.
https://www.crcpress.com/Lie-Algebras-In-Particle-Physics-from-Isospin-To-Unified-Theories/Georgi/p/book/9780738202334
https://doi.org/10.1201/9780429499210
[61]  Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715.
https://doi.org/10.1103/RevModPhys.75.715
[62]  Liddle, A. (2015) An Introduction to Modern Cosmology. 3rd Edition, John Wiley & Sons, Hoboken.
https://www.wiley.com/en-gb/An+Introduction+to+Modern+Cosmology,+3rd+Edition-p-9781118502143
[63]  Hall, G.S. (2017) General Relativity. Proceedings of the Forty Sixth Scottish Universities Summer School in Physics, Aberdeen, July 1995, 432 p.
https://doi.org/10.1201/9780203753804
[64]  Darwin, C. (1859) The Origin of Species. Murray, London.
[65]  van Wyhe, J. (2006) The Complete Work of Charles Darwin Online. Notes and Records of the Royal Society, 60, 87-89.
https://doi.org/10.1098/rsnr.2005.0128
[66]  Campbell, J.O. (2016) Universal Darwinism as a Process of Bayesian Inference. Frontiers in Systems Neuroscience, 10, 49.
https://doi.org/10.3389/fnsys.2016.00049
[67]  Whitehead, A.N. (1929) Process and Reality. Macmillan, New York.
[68]  Tammes, P.M.L. (1930) On the Origin of Number and Arrangement of the Places of Exit on the Surface of Pollen-Grains. Recueil des Travaux Botaniques Néerlandais, 27, 1-84.
[69]  Tóth, L.F. (1950) Some Packing and Covering Theorems. Acta Scientiarum Mathematicarum (Szeged), 12, 62-67.
[70]  Robinson, R.M. (1961) Arrangement of 24 Points on a Sphere. Mathematische Annalen, 144, 17-48.
https://doi.org/10.1007/BF01396539
[71]  Longuet-Higgins, M.S. (2009) Snub Polyhedra and Organic Growth. Proceedings of the Royal Society A, 465, 477-491.
https://doi.org/10.1098/rspa.2008.0219
[72]  Erber, T. and Hockney, G.M. (1991) Equilibrium Configurations of N Equal Charges on a Sphere. Journal of Physics A, 24, 1369-1377.
[73]  Morphew, D. and Chakrabarti, D. (2018) Programming Hierarchical Self-Assembly of Colloids: Matching Stability and Accessibility. Nanoscale, 10, 13875-13882.
https://doi.org/10.1039/C7NR09258J
[74]  Kalinin, N., Guzmán-Sáenz, A., Prieto, Y., Shkolnikov, M., Kalinina, V. and Lupercio, E. (2018) Self-Organized Criticality and Pattern Emergence through the Lens of Tropical Geometry. Proceedings of the National Academy of Sciences of the United States of America, 115, E8135-E8142.
https://doi.org/10.1073/pnas.1805847115
[75]  Zurek, W.H. (2009) Quantum Darwinism. Nature Physics, 5, 181-188.
https://doi.org/10.1038/nphys1202
[76]  Griffiths, R.B. (2007) Types of Quantum Information. Physical Review A, 76, Article ID: 062320.
https://doi.org/10.1103/PhysRevA.76.062320
[77]  Pisanski, T. and Servatius, B. (2013) Graphs. In: Configurations from a Graphical Viewpoint, Birkhauser, Boston, 15-53.
https://doi.org/10.1007/978-0-8176-8364-1_2
[78]  Weisstein, E.W., Snub Cubical Graph. MathWorld. A Wolfram Web Resource.
http://mathworld.wolfram.com/SnubCubicalGraph.html
[79]  Brinkmann, G., Coolsaet, K., Goedgebeur, J. and Mélot, H. (2013) House of Graphs: A Database of Interesting Graphs. Discrete Applied Mathematics, 161, 311-314.
https://doi.org/10.1016/j.dam.2012.07.018
[80]  ‘t Hooft, G.T. (2014) The Cellular Automaton Interpretation of Quantum Mechanics.
https://arxiv.org/abs/1405.1548
[81]  nLab Authors (2019) Tetrahedral Group.
http://ncatlab.org/nlab/show/tetrahedral%20group
[82]  ‘t Hooft, G. (1993) Dimensional Reduction in Quantum Gravity.
https://arxiv.org/abs/gr-qc/9310026
[83]  Thorn, C.B. (1994) Reformulating String Theory with the 1/N Expansion.
https://arxiv.org/abs/hep-th/9405069
[84]  Susskind, L. (1995) The World as a Hologram. Journal of Mathematical Physics, 36, 6377-6396.
https://doi.org/10.1063/1.531249
[85]  Maldacena, J. (1999) The Large-N Limit of Superconformal Field Theories and Supergravity. International Journal of Theoretical Physics, 38, 1113-1133.
https://doi.org/10.1023/A:1026654312961
[86]  Wilson, R.A. (2009) Octonions and the Leech Lattice. Journal of Algebra, 322, 2186-2190.
https://doi.org/10.1016/j.jalgebra.2009.03.021
[87]  Baez, J. (2002) The Octonions. Bulletin of the American Mathematical Society, 39, 145-205.
https://doi.org/10.1090/S0273-0979-01-00934-X
[88]  Chapline, G. (2015) Leech Lattice Extension of the Non-Linear Schrodinger Equation Theory of Einstein Spaces.
https://arxiv.org/abs/1510.01350
[89]  Conway, J.H. and Norton, S.P. (1979) Monstrous Moonshine. Bulletin of the London Mathematical Society, 11, 308-339.
https://doi.org/10.1112/blms/11.3.308
[90]  Furey, C. (2018) as a Symmetry of Division Algebraic Ladder Operators. The European Physical Journal C, 78, 375.
https://doi.org/10.1140/epjc/s10052-018-5844-7
[91]  Georgi, H. and Glashow, S.L. (1974) Unity of All Elementary-Particle Forces. Physical Review Letters, 32, 438.
https://doi.org/10.1103/PhysRevLett.32.438
[92]  Koca, M., Koca, N.O. and Al-Shu’eili, M. (2010) Chiral Polyhedra Derived from Coxeter Diagrams and Quaternions.
https://arxiv.org/abs/1006.3149
[93]  Borsten, L., Dahanayake, D., Duff, M.J., Ebrahim, H. and Rubens, W. (2009) Black Holes, Qubits and Octonions. Physics Reports, 471, 113-219.
https://doi.org/10.1016/j.physrep.2008.11.002
[94]  Braun, V. (2012) The 24-Cell and Calabi-Yau Threefolds with Hodge Numbers (1,1). Journal of High Energy Physics, 2012, 101.
https://doi.org/10.1007/JHEP05(2012)101
[95]  Witten, E. (1995) String Theory Dynamics in Various Dimensions. Nuclear Physics B, 443, 85-126.
https://doi.org/10.1016/0550-3213(95)00158-O
[96]  Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985) Heterotic String Theory (I). The Free Heterotic String. Nuclear Physics B, 256, 253-284.
https://doi.org/10.1016/0550-3213(85)90394-3
[97]  Morrison, D.R. and Vafa, C. (1996) Compactifications of F-Theory on Calabi-Yau Threefolds (I). Nuclear Physics B, 473, 74-92.
https://arxiv.org/abs/hep-th/9602114
https://doi.org/10.1016/0550-3213(96)00242-8
[98]  Morrison, D.R. and Vafa, C. (1996) Compactifications of F-Theory on Calabi-Yau Threefolds (II). Nuclear Physics B, 476, 437-469.
https://doi.org/10.1016/0550-3213(96)00369-0
[99]  Musin, O.R. (2008) The Kissing Number in Four Dimensions. Annals of Mathematics, 168, 1-32.
https://doi.org/10.4007/annals.2008.168.1
[100]  Weisstein, E.W., Tribonacci Constant. From MathWorld. A Wolfram Web Resource.
http://mathworld.wolfram.com/TribonacciConstant.html
[101]  Noe, T., Piezas, T. and Weisstein, E.W., Tribonacci Number. From MathWorld. A Wolfram Web Resource.
http://mathworld.wolfram.com/TribonacciNumber.html
[102]  Piezas III, T. (2011) Tribonacci Constant and Pi. Article 2. A Collection of Algebraic Identities.
https://sites.google.com/site/tpiezas/0012
[103]  Podani, J., Kun, á. and Szilágyi, A. (2018) How Fast Does Darwin’s Elephant Population Grow? Journal of the History of Biology, 51, 259-281.
https://doi.org/10.1007/s10739-017-9488-5
[104]  Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., et al. (2018) Planck 2018 Results. VI. Cosmological Parameters.
https://arxiv.org/abs/1807.06209
[105]  Voorhees, P.W. (1985) The Theory of Ostwald Ripening. Journal of Statistical Physics, 38, 231-252.
https://doi.org/10.1007/BF01017860
[106]  Ratke, L. and Beckermann, C. (2001) Concurrent Growth and Coarsening of Spheres. Acta Materialia, 49, 4041-4054.
https://doi.org/10.1016/S1359-6454(01)00286-5
[107]  Garcia-Morales, V. (2015) Quantum Mechanics and the Principle of Least Radix Economy. Foundations of Physics, 45, 295-332.
https://doi.org/10.1007/s10701-015-9865-x
[108]  Field, R.J. and Noyes, R.M. (1974) Oscillations in Chemical Systems. IV. Limit Cycle Behavior in a Model of a Real Chemical Reaction. The Journal of Chemical Physics, 60, 1877-1884.
https://doi.org/10.1063/1.1681288
[109]  Fleming, P. (2017) 12.11: Oscillating Reactions. Physical Chemistry. LibreTexts. California State University, Long Beach, CA.
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Physical_Chemistry_(Fleming)/12%3A_Chemical_Kinetics_II/12.11%3A_Oscillating_Reactions
[110]  Riess, A.G., Casertano, S., Yuan, W., Macri, L., Anderson, J., MacKenty, J.W., et al. (2018) New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. The Astrophysical Journal, 855, 136.
[111]  Pan, W., Baldwin, K.W., West, K.W., Pfeiffer, L.N. and Tsui, D.C. (2015) Fractional Quantum Hall Effect at Landau Level Filling ν = 4/11. Physical Review B, 91, Article ID: 041301.
https://doi.org/10.1103/PhysRevB.91.041301
[112]  Rovelli, C. (2018) Black Hole Evolution Traced Out with Loop Quantum Gravity. Physics, 11, 127.
https://doi.org/10.1103/Physics.11.127
[113]  Davies, P. (2019) The Demon in the Machine: How Hidden Webs of Information Are Finally Solving the Mystery of Life. Penguin, London.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133