A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (where x = 2, 4, 6, 8). For this purpose, Handerson’s theory based on non-isothermal method for thermal analysis of single-scan DSC data has been used. The activation energy of crystallization and order parameter has been determined and composition dependence of these parameters has been discussed.
References
[1]
Ohta, T. (2001) Phase-Change Optical Memory Promotes the DVD Optical Disk. Journal of Optoelectronics and Advanced Material, 3, 609-626.
Seddon, A.B. and Laine, M.J. (1997) Chalcogenide Glasses for Acousto-Optic Devices. II. As-Ge-Se Systems. Journal of Non-Crystalline Solids, 213, 168-173.
https://doi.org/10.1016/S0022-3093(96)00665-5
[4]
Kolobov, A.V. and Tominaga, J. (2002) Chalcogenide Glasses in Optical Recording: Recent Progress. Journal of Optoelectronics and Advanced Materials, 4, 679-686.
[5]
Andriesh, A.M., Iovu, M.S. and Shutov, S.D. (2002) Chalcogenide Non-Crystalline Semiconductors in Optoelectronics. Journal of Optoelectronics and Advanced Materials, 4, 631-647.
[6]
Parveen, B., et al. (2018) Investigation of Physical Properties of SnS: Fe Diluted Magnetic Semiconductor Nanoparticles for Spintronic Applications. Journal of Magnetism and Magnetic Materials, 460, 111-119.
https://doi.org/10.1016/j.jmmm.2018.03.022
[7]
Debenedetti, P.G. and Stillinger, F.H. (2001) Supercooled Liquids and the Glass Transition. Nature, 410, 259-267. https://doi.org/10.1038/35065704
[8]
Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F. and Martin, S.W. (2000) Relaxation in Glassforming Liquids and Amorphous Solids. Journal of Applied Physics, 88, 3113-3157. https://doi.org/10.1063/1.1286035
[9]
Angell, C.A. (1995) Formation of Glasses from Liquids and Biopolymers. Science, 267, 1924-1935. https://doi.org/10.1126/science.267.5206.1924
[10]
Wamwangi, D., Njoroge, W.K. and Wuttig, M. (2002) Crystallization Kinetics of Ge4Sb1Te5 Films. Thin Solid Films, 408, 310-315.
https://doi.org/10.1016/S0040-6090(02)00062-7
[11]
Mehta, N. and Kumar, A. (2006) Comparative Analysis of Calorimetric Studies in Se90M10 (M = In, Te, Sb) Chalcogenide Glasses. Journal of Thermal Analysis and Calorimetry, 87, 345-350. https://doi.org/10.1007/s10973-005-7411-3
[12]
Singh, A.K. and Kedar, S. (2007) Correlative Study of Optical, Electrical and Thermal Transport Properties of Se100-xInx Chalcogenide Glasses. Journal of Optoelectronics and Advanced Materials, 9, 3756-3759.
[13]
Gao, Y.Q. and Wang, W. (1986) On the Activation Energy of Crystallization in Metallic Glasses. Journal of Non-Crystalline Solids, 81, 129-134.
https://doi.org/10.1016/0022-3093(86)90262-0
[14]
Bhargavaf, A. (2010) Crystallization Process in Amorphous Sn-Te-Se Thin Films. Chalcogenide Letters, 7, 175-180.
[15]
Mehta, N., Dwivedi, V., Agnihotari, A.K. and Kumar, A. (2017) Applicability of Single-Scan Differential Scanning Calorimetry Technique for Determination of Kinetic Parameters of Crystallization in Glassy Se-Te-Ga System. Advanced Science, Engineering and Medicine, 9, 311-314. https://doi.org/10.1166/asem.2017.2008
[16]
Saffarini, G., Saiter, J.M. and Schmitt, H. (2007) The Composition Dependence of the Optical Band Gap in Ge-Se-In Thin Films. Optical Materials, 29, 1143-1147.
https://doi.org/10.1016/j.optmat.2006.05.003
[17]
Moharram, A.H., El-Oyoun, M.A. and Abu-Sehly, A.A. (2001) Calorimetric Study of the Chalcogenide Se72. 5Te20Sb7. 5 Glass. Journal of Physics D: Applied Physics, 34, 2541. https://doi.org/10.1088/0022-3727/34/16/321
[18]
Anami, B. and Kalla, J. (2016) DTA and Thermal Stability Study of Se-Te-Sn Glass. International Journal of Materials Science and Engineering, 4, 126-132.
[19]
Jaakko, A., et al. (2009) Solid Form Screening—A Review. European Journal of Pharmaceutics and Biopharmaceutics, 71, 23-37.
https://doi.org/10.1016/j.ejpb.2008.07.014
[20]
Atyia, H.E. and Bekheet, A.E. (2008) Switching Phenomenon and Optical Properties of Se85Te10Bi5 Films. Physica B: Condensed Matter, 403, 3130-3136.
https://doi.org/10.1016/j.physb.2008.03.029
[21]
Henderson, D.W. (1979) Experimental Analysis of Non-Isothermal Transformations Involving Nucleation and Growth. Journal of Thermal Analysis, 15, 325-331.
https://doi.org/10.1007/BF01903656
[22]
Melvin, A. (1939) Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics, 7, 1103-1112. https://doi.org/10.1063/1.1750380
[23]
Melvin, A. (1940) Kinetics of Phase Change. II Transformation Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics, 8, 212-224.
https://doi.org/10.1063/1.1750631
[24]
Kissinger, H.E. (1956) Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis. Journal of Research of the National Bureau of Standards, 57, 217-221. https://doi.org/10.6028/jres.057.026
Matusita, K., Takayama, S. and Sakka, S. (1980) Electrical Conductivities of Mixed Cation Glasses. Journal of Non-Crystalline Solids, 40, 149-158.
https://doi.org/10.1016/0022-3093(80)90099-X
[27]
Sestak, J. (1974) Applicability of DTA to the Study of Crystallization Kinetics of Glasses. Physics and Chemistry of Glasses, 15, 137-140.
[28]
Boswell, P.G. (1980) The Effect of Thermal History on the Crystallization Kinetics of a Liquid-Quenched Metallic Glass. Journal of Materials Science, 15, 1926-1938.
https://doi.org/10.1007/BF00550618
[29]
Henderson, D.W. (1979) Thermal Analysis of Non-Isothermal Crystallization Kinetics in Glass Forming Liquids. Journal of Non-Crystalline Solids, 30, 301-315.
https://doi.org/10.1016/0022-3093(79)90169-8
[30]
Srivastava, N.M., Kumar, D. and Kumar, A. (2013) Crystallisation in Glass Transition Kinectics in Se90Sb10-xAgx Glassy Alloys. Iraqi Journal of Applied Physics, 9, 7-13.
[31]
Sunil, K. and Singh, K. (2012) Glass Transition, Thermal Stability and Glass-Forming Tendency of Se90-xTe5Sn5Inx Multi-Component Chalcogenide Glasses. Thermochimica Acta, 528, 32-37. https://doi.org/10.1016/j.tca.2011.11.005
[32]
Manish, S. (2005) A Crystallization Study of Amorphous Tex(Bi2Se3)1-x Alloys with Variation of the Se Content. Journal of Physics D: Applied Physics, 38, 460.
https://doi.org/10.1088/0022-3727/38/3/017
[33]
Mehta, N., Kumar, D. and Kumar, A. (2007) Correlation between Glass Forming Tendency and Rate of Crystallization in Glassy Se100-xTex and Se100-xInx Alloys. Physica Status Solidi, 204, 3108-3115.
[34]
Anjani, K., Shukla, S. and Shukla, R.K. (2017) Electrical, Photo-Electrical and Optical Properties of Selenium Rich Chalcogenide Glasses: A Review. Materials Focus, 6, 415-423. https://doi.org/10.1166/mat.2017.1425
[35]
Mehta, N., Agarwal, P. and Kumar, A. (2005) Calorimetric Studies of Glass Forming Ability and Thermal Stability in A-Se80Te19.5M0.5 (M = Ag, Cd, In, Sb) Alloys. The European Physical Journal-Applied Physics, 31, 153-158.
https://doi.org/10.1051/epjap:2005048
[36]
Mehta, N. and Kumar, A. (2004) Thermal Characterization of Glassy Se70Te20M10 Using DSC Technique. Journal of Materials Science, 39, 6433-6437.
https://doi.org/10.1023/B:JMSC.0000044880.99215.be
[37]
Saxena, N.S. (2004) Phase Transformation Kinetics and Related Thermodynamic and Optical Properties in Chalcogenide Glasses. Journal of Non-Crystalline Solids, 345, 161-168. https://doi.org/10.1016/j.jnoncrysol.2004.08.016