全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Investigation on the Properties of Recycled Concrete Using Hybrid Fibers

DOI: 10.4236/ojcm.2019.92009, PP. 183-196

Keywords: Fiber-Reinforced Concrete, Fly-Ash, Compressive Strength, Tensile Strength, Carbon Fiber, Glass Fiber, Stainless Steel Fiber

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to the inherent property of concrete being very weak in tension, efforts have been made to overcome this deficiency by adding various type of fibers like carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), polypropylene fiber (PPF) and stainlesssteel fiber (SSF) smeared into the concrete mix. The present study involves experimental investigation on the use of GFRP, CFRP and SSF fibers alone or as combination to improve the mechanical properties of concrete. Furthermore, concrete cylinders were cast and tested for compression and tension using 10% fly ash as cement replacement in all specimens. Besides fiber material types, fiber reinforcement ratios of 1% and 1.5% were tested to investigate the mechanical properties of concrete. In all concrete cylinder tests, the fiber reinforcement ratio of 1% had a significant contribution in increasing the tensile strength as oppose to compressive strength. As a result, the tensile and compressive strengths were increased by 26% and 11%, respectively as compared to the control specimen. Increasing the fiber reinforcement ratio from 1% to 1.5%, resulted in diminishing the mechanical properties of concrete. However, reduction in concrete compressive strength was more prominent than the tensile strength. Furthermore, it was observed that, the crack propagation was decreased with the increase of fiber content when compared to the control specimen.

References

[1]  Patel, P.A., Atul, K.D. and Desai, A.J.D. (2012) An Investigation on Properties of Various Fibre Reinforced Concretes. International Journal of Advanced Engineering Research and Studies, 2, 36-38.
[2]  Ulape, Y. and Narule, G. (2015) Experimental Investigation on Steel Fiber Reinforced Concrete Using Metakolin. International Journal of Emerging Technology and Advanced Engineering and Science, 5, 105-111.
[3]  Sheetal, J.S.C., Mathew, M.D. and Jose, A.M. (2015) Experimental Study on Fiber Reinforced Concrete Using Lathe Scrap Fiber. International Journal of Advanced Technology in Engineering and Science, 3, 622-630.
[4]  Revathi, S., Gandhimathi, R.S. and Saranya, S. (2016) Experimental Investigation on Mechanical Properties of Hybrid Fibres in M25 Grade Concrete. International Journal of Innovations in Engineering and Technology, 6, 213-220.
[5]  Brijbhushan, S. and Maneeth, P.D. (2015) Experimental Investigation on Strength and Durability Properties of Hybrid Fiber Reinforced Concrete. International Research Journal of Engineering and Technology, 2, 891-896.
[6]  Karahan, O. and Atis, C.D. (2011) The Durability Properties of Polypropylene Fiber Reinforced Fly Ash Concrete. Materials and Design, 32, 1044-1049.
[7]  Indumathi, B. and Gnanadevi, V. (2015) An Experimental Investigation on Properties of Hybrid Fiber Reinforced Concrete with GGBS and Fly Ash. International Journal of Emerging Technology in Computer Science and Electronics, 13, 120-123.
[8]  Kanagavel, R. and Arunachalam, K. (2018) Experimental Investigation on Mechanical Properties of Hybrid Fiber Reinforced Quaternary Cement Concrete. Journal of Engineered Fibers and Fabrics, 10, 139-147.
https://doi.org/10.1177/155892501501000407
[9]  Topcu, I.B. and Canbaz, M. (2007) Effect of Different Fibers on the Mechanical Properties of Concrete Containing Fly Ash. Construction and Building Materials, 21, 1486-1491.
https://doi.org/10.1016/j.conbuildmat.2006.06.026
[10]  Seshadri, R., Ramesh, B. and Niramala, S. (2016) A Study of High Performance Fiber Reinforced Polymers (FRP). International Journal of Innovative Research in Science, Engineering and Technology, 5.
[11]  Vignesh, P., Krishnaraja, A.R. and Nandhaini, N. (2014) Study on Mechanical Properties of Geo Polymer Concrete Using M-Sand and Glass Fibers. International Journal of Innovative Research in Science, Engineering and Technology, 3, 110-116.
[12]  Hsiea, M., Tu, C.J. and Song, P.S. (2008) Mechanical Properties of Polypropylene Hybrid Fiber-Reinforced Concrete. Materials Science and Engineering: A, 494, 153-157.
https://doi.org/10.1016/j.msea.2008.05.037
[13]  Song, P.S., Hwang, S. and Sheu, B.C. (2005) Strength Properties of Nylon- and Polypropylene-Fiber-Reinforced Concretes. Cement and Concrete Research, 35, 1546-1550.
https://doi.org/10.1016/j.cemconres.2004.06.033
[14]  Khoso, S., Wagan, F.H., Khan, J.S., Bhatti, N.K. and Ansari, A.A. (2014) Qualitative Analysis of Baked Clay Bricks Available in Larkana Region, Pakistan. Journal of Architecture Civil Engineering Environment, 7, 41-50.
[15]  Basham, K.D., Clark, M., France, T. and Harrison, P. (2007) Fly Ash Is a Byproduct from Burning Pulverized Coal in Electric Power Generating Plants.
https://www.concreteconstruction.net/how-to/materials/what-is-fly-ash_o
[16]  Khoso, S., Ansari, A.A. and Wagan, F.H. (2014) Investigative Construction of Buildings Using Baked Clay Post-Reinforced Beam Panels. Journal of Architecture Civil Engineering Environment, 7, 57-66.
[17]  Khoso, S., Ansari, A.A., Khan, J.S. and Wagan, F.H. (2015) Experimental Study on Recycled Concrete Using Dismantled Road Aggregate and Baggase Ash. Proceedings of 7th International Civil Engineering Congress (ICEC-2015), Sustainable Developments through Advancements in Civil Engineering, Karachi, Pakistan, 54-61.
[18]  Khoso, S., Khan, J.S., Ansari, A.A. and Khaskheli, Z.H. (2016) Experimental Investigation on the Properties of Cement Concrete Partially Replaced by Silica Fume and Fly Ash. Journal of Applied Engineering Science, 14, 345-350.
https://doi.org/10.5937/jaes14-11116
[19]  Keerio, M.A., Khoso, S., Khan, S.J., Ansari, A.A. and Bhatti, K.N. (2017) The Effect of Waste Glass as Partial Replacement of Cement on Properties of Concrete. Engineering Science and Technology International Research Journal, 1, 59-63.
[20]  Khoso, S., Keerio, A.M., Ansari, A.A., Khan, J.S. and Bangwar, K.D. (2017) Effects of Rice Husk Ash and Recycled Aggregates on Mechanical Properties of Concrete. International Journal of Scientific and Engineering Research, 8, 1832-1835.
[21]  Saand, A., Keerio, M.A., Juj, R., Khoso, S. and Bangwar, D.K. (2017) Utilization of Waste Glass as Partial Replacement of Fine Aggregate in Concrete. Engineering Science and Technology International Research Journal, 1, 28-31.
[22]  Khoso, S., Naqash, M.T., Sher, S. and Saeed, Z. (2018) An Experimental Study on Fiberly Reinforced Concrete Using Polypropylene Fibre with Virgin and Recycled Road Aggregate. Architecture, Civil Engineering, Environment, 11, 73-80.
https://doi.org/10.21307/ACEE-2018-007
[23]  Kumar, V. and Kumar, R. (2016) An Experimental Study on Partial Replacement of Coarse Aggregate by Iron Slag with Polypropylene Fiber. International Journal of Science and Research (IJSR), 5, 212-216.
[24]  State of the Art Report on Fiber Reinforced Concrete Reported by ACI Committee, 544.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133