全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lignin: Renewable Raw Material for Adhesive

DOI: 10.4236/ojpchem.2019.92003, PP. 27-38

Keywords: Polyol, Lignin, Wood, Adhesive, Biopolymer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biobased raw material like lignin used during manufacturing of wood and wood composite adhesive have been used extensively to replaced petro-chemical based adhesive because of their easy availability, low cost and biodegradability. Bio-based resources, such as lignin which is an abundant, constitute a rich source of hydroxyl functionality which is being considered as reactive raw material for the production of “adhesives”. Lignin is mainly used for production of wood and wood composite adhesives by blending with soy protein, grafting with another polymer and reacting with isocynates. In this review, lignin as suitable alternative raw material to conventional petroleum sourced materials used as a raw material for adhesives is discussed.

References

[1]  Rahman, M.M., Zahir, M.H. and Kim, H.D. (2016) Synthesis and Properties of Waterborne Polyurethane (WBPU)/Modified Lignin Amine (MLA) Adhesive: A Promising Adhesive Material. Polymers, 8, 318.
https://doi.org/10.3390/polym8090318
[2]  Zhang, W., Ma, Y., Wang, C., Li, S., Zhang, M. and Chu, F. (2013) Preparation and Properties of Lignin-Phenol-Formaldehyde Resins Based on Different Biorefinery Residues of Agricultural Biomass. Industrial Crops and Products, 43, 326-333.
https://doi.org/10.1016/j.indcrop.2012.07.037
[3]  Wang, S., Yu, Y. and Di, M. (2018) Green Modification of Corn Stalk Lignin and Preparation of Environmentally Friendly Lignin-Based Wood Adhesive. Polymers, 10, 631.
https://doi.org/10.3390/polym10060631
[4]  Hu, L., Pan, H., Zhou, Y. and Zhang, M. (2011) Methods to Improve Lignins Reactivity as a Phenol Substitute and as Replacement for Other Phenolic Compounds: A Brief Review. BioResources, 6, 3515-3525.
[5]  Todorciuc, T., Capraru, A.M., Kratochvilova, I. and Popa, V.I. (2009) Characterization of Non-Wood Lignin and Its Hydoxymethyl a Ted Derivatives by Spectroscopy and Self-Assembling Investigations. Cellulose Chemistry and Technology, 43, 399-408.
[6]  El-Mansouri, N.E., Yuan, Q. and Huang, F. (2011) Characterization of Alkaline Lignins for Use in Phenol-Formaldehyde and Epoxy Resins. Bioresource, 6, 2647-2662.
[7]  Pradyawong, S., Qi, G., Li, N., Sun, X.-S. and Wang, D. (2017) Adhesion Properties of Soy Protein Adhesives Enhanced by Biomass Lignin. International Journal of Adhesion and Adhesives, 75, 66-73.
https://doi.org/10.1016/j.ijadhadh.2017.02.017
[8]  Luo, J., Luo, J., Yuan, C., Zhang, W., Li, J., Gao, Q. and Chen, H. (2015) An Eco-Friendly Wood Adhesive from Soy Protein and Lignin: Performance Properties. RSC Advances, 5, 100849-100855.
https://doi.org/10.1039/C5RA19232C
[9]  Xiao, Z., Li, Y., Wu, X., Qi, G., Li, N., Zhang, K., Wang, D. and Sun, X.S. (2013) Utilization of Sorghum Lignin to Improve Adhesion Strength of Soy Protein Adhesives on Wood Veneer. Industrial Crops and Products, 50, 501-509.
https://doi.org/10.1016/j.indcrop.2013.07.057
[10]  Schorr, D., Diouf, P.N. and Stevanovic, T. (2014) Evaluation of Industrial Lignins for Biocomposites Production. Industrial Crops and Products, 52, 65-73.
https://doi.org/10.1016/j.indcrop.2013.10.014
[11]  Ibrahim, V., Mamo, G., Gustafsson, P.J. and Hatti-Kaul, R. (2013) Production and Properties of Adhesives Formulated from Laccase Modified Kraft Lignin. Industrial Crops and Products, 45, 343-348.
https://doi.org/10.1016/j.indcrop.2012.12.051
[12]  Xin, J., Zhang, P., Wolcott, M.P., Zhang, J., Hiscox, W.C. and Zhang, X. (2017) A Novel and Formaldehyde-Free Preparation Method for Lignin Amine and Its Enhancement for Soy Protein Adhesive. Journal of Polymers and the Environment, 25, 599-605.
https://doi.org/10.1007/s10924-016-0844-x
[13]  Hoftiezer, H.W., Watts, D.J. and Takahashi, A (1984) Cationic Reaction Product of Kraft Lignin with Aldehyde and Polyamine. US Patent No. 4455257.
[14]  Dong, H., Peng, W. and Lewis, L.N. (2013) Formaldehyde-Free Ligninamine Coagulants for Coagulating Suspended Materials in Water Stream. US Patent No. 9181405.
[15]  Zhu, X., Wang, D., Li, N. and Sun, X. (2017) Bio-Based Wood Adhesive from Camelina Protein (a Biodiesel Residue) and Depolymerized Lignin with Improved Water Resistance. ACS Omega, 2, 7996-8004.
https://doi.org/10.1021/acsomega.7b01093
[16]  Xu, C., Arancon, R.A.D., Labidi, J. and Luque, R. (2014) Lignin Depolymerisation Strategies: Towards Valuable Chemicals and Fuels. Chemical Society Reviews, 43, 7485-7500.
https://doi.org/10.1039/C4CS00235K
[17]  Aracri, E., Díaz Blanco, C. and Tzanov, T. (2014) An Enzymatic Approach to Develop a Lignin-Based Adhesive for Wool Floor Coverings. Green Chemistry, 16, 2597-2603.
https://doi.org/10.1039/c4gc00063c
[18]  Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D., Shen, Y., He, X., Lai, M. and He, Y. (2014) Study on Biodegradation Process of Lignin by FTIR and DSC. Environmental Science and Pollution Research, 21, 14004-14013.
https://doi.org/10.1007/s11356-014-3342-5
[19]  Turunen, M., Alvila, L., Pakkanen, T.T. and Rainio, J. (2003) Modification of Phenol-Formaldehyde Resol Resins by Lignin, Starch, and Urea. Journal of Applied Polymer Science, 88, 582-588.
https://doi.org/10.1002/app.11776
[20]  Baumberger, S., Monties, B. and Valle, G.D. (1998) Use of Kraft Lignin as Filler for Starch Films. Polymer Degradation and Stability, 59, 273-277.
https://doi.org/10.1016/S0141-3910(97)00193-6
[21]  Julinova, M. Kupec, J., Alexy, P., Hoffmann, J., Sedlarik, V., Vojtek, T., Chromcakova, J. and Bugaj, P. (2010) Lignin and Starch as Potential Inductors for Biodegradation of Films Based Onpoly(Vinyl Alcohol) and Protein Hydrolysate. Polymer Degradation and Stability, 95, 225-233.
https://doi.org/10.1016/j.polymdegradstab.2009.10.008
[22]  Kaewtatip, K. and Thongmee, J. (2013) Effect of Kraft Lignin and Esterified Lignin on the Properties of Thermoplastic Starch. Materials & Design, 49, 701-704.
https://doi.org/10.1016/j.matdes.2013.02.010
[23]  Shi, R. and Li, B. (2016) Synthesis and Characterization of Cross-Linked Starch/ Lignin Film. Starch, 68, 1224-1232.
https://doi.org/10.1002/star.201500331
[24]  Sarwono, A., Man, Z., Bustam, M.A., Subbarao, D., Idris, A., Muhammad, N., Khan, A.S. and Ullah, Z. (2017) Swelling Mechanism of Urea Cross linked Starch-Lignin Films in Water. Environmental Technology, 19, 1-31.
[25]  Lora, J. and Glasser, W. (2002) Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. Journal of Polymers and the Environment, 10, 39-48.
https://doi.org/10.1023/A:1021070006895
[26]  Korbag, I. and Mohamed Saleh, S. (2015) Studies on Mechanical and Biodegradability Properties of PVA/ Lignin Blend Films. International Journal of Environmental Studies, 73, 18-24.
https://doi.org/10.1080/00207233.2015.1082249
[27]  Corradini, E., Pineda, E.A.G. and Hechenleitner, A.A.W. (1999) Lignin-Poly (Vinyl Alcohol) Blends Studied by Thermal Analysis. Polymer Degradation and Stability, 66, 199-208.
https://doi.org/10.1016/S0141-3910(99)00066-X
[28]  Mao, J.Z., Zhang, L.M. and Xu, F. (2012) Fractional and Structural Characterization of Alkaline Lignins from Carexmeyeriana Kunth. Cellulose Chemistry and Technology, 46, 193-205.
[29]  Tejado, A., Pena, C., Labidi, J., Echeverria, J.M. and Mondragon, I. (2007) Physico-Chemical Characterization of Lignins from Different Sources for Use in Phenol-Formaldehyde Resin Synthesis. Bioresource Technology, 98, 1655-1663.
https://doi.org/10.1016/j.biortech.2006.05.042
[30]  Minu, K., Jiby, K.K. and Kishore, V.V.N. (2012) Isolation and Purification of Lignin and Silica from the Black Liquor Generated during the Production of Bioethanol from Rice Straw. Biomass and Bioenergy, 39, 210-217.
https://doi.org/10.1016/j.biombioe.2012.01.007
[31]  Su, L., Xing, Z., Wang, D., Xu, G., Ren, S. and Fang, G. (2013) Mechanical Properties Research and Structural Characterization of Alkali Lignin/Poly (Vinyl Alcohol) Reaction Films. BioResources, 8, 3532-3543.
https://doi.org/10.15376/biores.8.3.3532-3543
[32]  Kubo, S. and Kadla, J.F. (2003) The formation of Strong Intermolecular Interactions in Immiscible Blends of Poly(Vinyl Alcohol) (PVA) and Lignin. Biomacromolecules, 4, 561-567.
https://doi.org/10.1021/bm025727p
[33]  Korbag, I. and Saleh, S.M. (2016) Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol/Lignin Film. International Journal of Environmental Studies, 73, 226-235.
https://doi.org/10.1080/00207233.2016.1143700
[34]  Pu, Y., Sun, Q., Pan, S., Zhu, S.-Y., Deng, Y. and Ragauskas, A.J. (2014) High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends. ChemSusChem, 7, 3513-3520.
[35]  Younesi-Kordkheili, H., KazemiNajafi, S., Behrooz, R. and Pizzi, A. (2015) Improving Urea Formaldehyde Resin Properties by Glyoxalated Soda Bagasse Lignin. European Journal of Wood and Wood Products, 73, 77-85.
https://doi.org/10.1007/s00107-014-0850-4
[36]  Alam Khan, M., Ashraf, S.M. and Malhorta, V.P. (2004) Development and Characterization of a Wood Adhesive Using Bagasse Lignin. International Journal of Adhesion and Adhesives, 24, 485-493.
https://doi.org/10.1016/j.ijadhadh.2004.01.003
[37]  Cetin, N. and Ozmen, N. (2003) Studies on Lignin Based Adhesives for Particleboard Panels. Turkish Journal of Agriculture and Forestry, 27, 183-189.
[38]  El-Mansouri, N.E. and Salvado, J. (2006) Structural Characterization of Technical Lignins for the Production of Adhesives: Application to Lignosulfonate, Kraft, Soda-Anthraquinone, Organosolv and Ethanol Process Lignins. Industrial Crops and Products, 24, 8-16.
https://doi.org/10.1016/j.indcrop.2005.10.002
[39]  El-Mansouri, N.E., Pizzi, A. and Salvado, J. (2007) Lignin-Based Wood Panel Adhesives without Formaldehyde. Holz als Roh-und Werkstoff, 65, 65-70.
https://doi.org/10.1007/s00107-006-0130-z
[40]  Pizzi, A. (2006) Recent Developments in Eco-Efficient Bio-Based Adhesives for Wood Bonding: Opportunities and Issues. Journal of Adhesion Science and Technology, 20, 829-846.
https://doi.org/10.1163/156856106777638635
[41]  Mansouri, H.R., Navarrete, P., Pizzi, A., Tapin-lingua, S., Benjelloun-Mlayah, B., Pasch, H. and Rigolet, S. (2011) Synthetic-Resin-Free Wood Panel Adhesives from Mixed Low Molecular Mass Lignin and Tannin. European Journal of Wood and Wood Products, 69, 221-229.
https://doi.org/10.1007/s00107-010-0423-0
[42]  Navarrete, P., Pizzi, A., Pasch, H. and Delmotte, L. (2012) Study on Lignin-Glyoxal Reaction by MALDI-TOF and CP-MAS 13C NMR. Journal of Adhesion Science and Technology, 26, 1069-1082.
[43]  Navarrete, P., Pizzi, A., Rode, K., Vignali, M. and Pasch, H. (2013) MALDI-TOF Study of Oligomers Distribution in Stability-Durable Spraydried Glyoxalated Lignin for Wood Adhesives. Journal of Adhesion Science and Technology, 27, 586-597.
https://doi.org/10.1080/01694243.2012.690618
[44]  Sevastyanova, Q., Qin, W. and Kadla, J.F. (2010) Effect of Nanofillers as Reinforcement Agents for Lignin Composite Fibers. Journal of Applied Polymer Science, 117, 2877-2881.
https://doi.org/10.1002/app.32198
[45]  Zhang, X., Zhu, Y., Yu, Y. and Song, J. (2017) Improve Performance of Soy Flour-Based Adhesive with a Lignin-Based Resin. Polymers, 9, 261.
https://doi.org/10.3390/polym9070261
[46]  Ghaffar, S.H. and Fan, M. (2014) Lignin in Straw and Its Applications as an Adhesive. International Journal of Adhesion and Adhesives, 48, 92-101.
https://doi.org/10.1016/j.ijadhadh.2013.09.001
[47]  Yang, S., Wu, J.-Q., Zhang, Y., Yuan, T.-Q. and Sun, R.-C. (2015) Preparation of Lignin-Phenol-Formaldehyde Resin Adhesive Based on Active Sites of Technical Lignin. Journal of Biobased Materials and Bioenergy, 9, 266-272.
https://doi.org/10.1166/jbmb.2015.1514
[48]  Calvo-Flores, F.G. and Dobado, J.A. (2010) Lignin as Renewable Raw Material. ChemSusChem, 3, 1227-1235.
https://doi.org/10.1002/cssc.201000157
[49]  Ghorbani, M., Liebner, F., Herwijnen, H.W.G.V., Pfungen, L., Krahofer, M. and Budjav, E. (2016) Lignin Phenol Formaldehyde Resins: The Impact of Lignin Type on Adhesive Properties. BioResources, 29, 6727-6741.
https://doi.org/10.15376/biores.11.3.6727-6741
[50]  Wang, S., Lai, Y.-Y., Yu, Y.-L., Yao, Z.-W. and Di, M.-W. (2017) Hydroxyethylated Modification of Corn Stalk Lignin. ChemBioEng Reviews, 9, 24-28.
[51]  Cong, F., Diehl, B.G., Hill, J.L., Brown, N.R. and Tien, M. (2013) Covalent Bond Formation between Amino Acids and Lignin: Cross-Coupling between Proteins and Lignin. Phytochemistry, 96, 449-456.
https://doi.org/10.1016/j.phytochem.2013.09.012
[52]  Hatakeyama, H., Tsujimoto, Y., Zarubin, M.J., Krutov, S.M. and Hatakeyama, T. (2010) Thermal Decomposition and Glass Transition of Industrial Hydrolysis Lignin. Journal of Thermal Analysis and Calorimetry, 101, 289-295.
https://doi.org/10.1007/s10973-010-0698-8
[53]  Qi, G.-Y. and Sun, X.-S. (2011) Soy Protein Adhesive Blends with Synthetic Latex on Wood Veneer. Journal of the American Oil Chemists’ Society, 88, 271-281.
https://doi.org/10.1007/s11746-010-1666-y
[54]  Panesar, S.S., Jacob, S., Misra, M. and Mohanty, A.K. (2013) Functionalization of Lignin: Fundamental Studies on Aqueous Graft Copolymerization with Vinyl Acetate. Industrial Crops and Products, 46, 191-196.
https://doi.org/10.1016/j.indcrop.2012.12.031
[55]  Chen, M.-J., Gunnells, D.W., Gardner, D.J., Milstein, O., Gersonde, R., Feine, H.J., Hüttermann, A., Frund, R., Lüdemann, H.D. and Meister, J.J. (1996) Graft Copolymers of Lignin with 1-Ethenylbenzene. 2. Properties. Macromolecules, 29, 1389-1398.
https://doi.org/10.1021/ma951150a
[56]  Jacob, S., Manjusri, M. and Amar, K.M. (2013) Green Synthesis for Lignin Plasticization: Aqueous Graft Copolymerization with Methyl Methacrylate. Journal of Renewable Materials, in press.
[57]  Mai, C., Majcherczyk, A. and Hüttermann, A. (2000) Chemo-Enzymatic Synthesis and Characterization of Graft Copolymers from Lignin and Acrylic Compounds. Enzyme and Microbial Technology, 27, 167-175.
https://doi.org/10.1016/S0141-0229(00)00214-3
[58]  Wang, J., Yao, K., Korich, A.L., Li, S., Ma, S., Ploehn, H.J., Iovine, P.M., Wang, C., Chu, F. and Tang, C. (2011) Combining Renewable Gum Rosin and Lignin: Towards Hydrophobic Polymer Composites by Controlled Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3728-3738.
https://doi.org/10.1002/pola.24809
[59]  Zhang, C.-Q., Wu, H.-C. and Kessler, M.-R. (2015) High Bio-Content Polyurethane Composites with Urethane Modified Lignin as Filler. Polymer, 69, 52-57.
https://doi.org/10.1016/j.polymer.2015.05.046
[60]  Yue, X.-P., Chen, F.-G. and Zhou, X.-S. (2011) Improved Interfacial Bonding of PVC/Wood-Flour Composites by Lignin Amine Modification. BioResources, 6, 2022-2034.
[61]  Yeo, J.-S., Seong, D.-W. and Hwang, S.-H. (2015) Chemical Surface Modification of Lignin Particle and Its Application as Filler in the Polypropylene Composites. Journal of Industrial and Engineering Chemistry, 31, 80-85.
https://doi.org/10.1016/j.jiec.2015.06.010
[62]  Jin, Y., Cheng, X. and Zheng, Z. (2010) Preparation and Characterization of Phenol-Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresource Technology, 101, 2046-2048.
https://doi.org/10.1016/j.biortech.2009.09.085
[63]  Ferdosian, F., Pan, Z., Gao, G. and Zhao, B. (2017) Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers, 9, 70.
https://doi.org/10.3390/polym9020070
[64]  Yang, S., Zhang, Y., Yuan, T.-Q. and Sun, R.-C. (2015) Lignin-Phenol-Formaldehyde Resin Adhesives Prepared with Biorefinery Technical Lignins. Journal of Applied Polymer Science, 132, 1-8.
https://doi.org/10.1002/app.42493
[65]  Vfizquez, G., Gonzfilez, J., Freire, S. and Antorrena, G. (1997) Effect of Chemical Modification of Lignin on the Gluebond Performance of Lignin-Phenolic Resins. Bioresource Technology, 60, 191-198.
https://doi.org/10.1016/S0960-8524(97)00030-8
[66]  Wang, M., Leitch, M. and Xu, C.-C. (2009) Synthesis of Phenol-Formaldehyde Resol Resins Using Organosolv Pine Lignins. European Polymer Journal, 45, 3380-3388.
https://doi.org/10.1016/j.eurpolymj.2009.10.003
[67]  Guo, Z., Liu, Z., Ye, L., Ge, K. and Zhao, T. (2015) The Production of Lignin-Phenol-Formaldehyde Resin Derived Carbon Fibers Stabilized by BN Preceramic Polymer. Materials Letters, 142, 49-51.
https://doi.org/10.1016/j.matlet.2014.11.068
[68]  Newman, W.H. and Glasser, W.G. (1985) Engineering plastics from lignin XII. Synthesis and Performance of Lignin Adhesives with Isocyanate and Melamine. Holzforschung, 39, 345-353.
https://doi.org/10.1515/hfsg.1985.39.6.345
[69]  Ma, Y., Zhao, X., Chen, X. and Wang, Z. (2011) An Approach to Improve the Application of Acid-Insoluble Lignin from Rice Hull in Phenol-Formaldehyde Resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 284-289.
https://doi.org/10.1016/j.colsurfa.2011.01.006
[70]  DonmezCavdar, A., Kalaycioglu, H. and Hiziroglu, S. (2008) Some of the Properties of Oriented Strandboard Manufactured Using Kraft Lignin Phenolic Resin. Journal of Materials Processing Technology, 202, 559-563.
https://doi.org/10.1016/j.jmatprotec.2007.10.039
[71]  Dongre, P., Driscoll, M., Amidon, T. and Bujanovic, B. (2015) Lignin-Furfural Based Adhesives. Energies, 8, 7897-7914.
https://doi.org/10.3390/en8087897
[72]  Foyer, G., Chanfi, B.H., Boutevin, B., Caillol, S. and David, G. (2016) New Method for the Synthesis of Formaldehyde-Free Phenolic Resins from Lignin-Based Aldehyde Precursors. European Polymer Journal, 74, 296-309.
https://doi.org/10.1016/j.eurpolymj.2015.11.036
[73]  Zhao, S. and Abuomar, M.M. (2017) Synthesis of Renewable Thermoset Polymers through Successive Lignin Modification Using Lignin-Derived Phenols. ACS Sustainable Chemistry & Engineering, 5, 5059-5066.
https://doi.org/10.1021/acssuschemeng.7b00440
[74]  Zhao, S. and Abu-Omar, M.M. (2015) Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers. Biomacromolecules, 16, 2025-2031.
https://doi.org/10.1021/acs.biomac.5b00670
[75]  Zhao, S. and Abu-Omar, M.M. (2016) Renewable Epoxy Networks Derived from Lignin-Based Monomers: Effect of Cross-Linking Density. ACS Sustainable Chemistry & Engineering, 4, 6082-6089.
https://doi.org/10.1021/acssuschemeng.6b01446
[76]  Yin, Q., Yang, W., Sun, C. and Di, M. (2012) Preparation and Properties of Lignin-Epoxy Resin Composite. BioResources, 7, 5737-5748.
https://doi.org/10.15376/biores.7.4.5737-5748
[77]  El Mansouri, N.E., Yuan, Q. and Huang, F. (2011) Synthesis and Characterization of Kraft Lignin-Based Epoxy Resins. BioResources, 6, 2492-2503.
[78]  Xue, B.L., Wen, J.L. and Sun, R.C. (2014) Lignin-Based Rigid Polyurethane foam Reinforced with Pulp Fiber: Synthesis and Characterization. ACS Sustainable Chemistry & Engineering, 2, 1474-1480.
https://doi.org/10.1021/sc5001226
[79]  Buono, P., Duval, A., Averous, L. and Habibi, Y. (2017) Lignin-Based Materials through Thiol-Maleimide “Click” Polymerization. ChemSusChem, 10, 984-992.
https://doi.org/10.1002/cssc.201601738
[80]  Mao, C.P. and Wu, S.B. (2014) Adsorption of Polyvinyl Acetate (PVAc) Adhesive Emulsion from Aqueous Solution by Lignin-Phenol Based Cationic Surfactant Modified Organic Kieselguhr. Applied Mechanics and Materials, 472, 861-866.
https://doi.org/10.4028/www.scientific.net/AMM.472.861
[81]  Zhang, W., Ma, Y., Xu, Y., Wang, C. and Chu, F. (2013) Lignocellulosic Ethanol Residue-Based Lignin-Phenol-Formaldehyde Resin Adhesive. International Journal of Adhesion and Adhesives, 40, 11-18.
https://doi.org/10.1016/j.ijadhadh.2012.08.004
[82]  Nacas, A.M., Ito, N.M., Sousa, R.R.D., Spinacé, M.A. and Dos Santos, D.J. (2017) Effects of NCO: OH Ratio on the Mechanical Properties and Chemical Structure of Kraft Lignin-Based Polyurethane Adhesive. The Journal of Adhesion, 93, 18-29.
https://doi.org/10.1080/00218464.2016.1177793

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413