全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Drying Air Velocity on Drying Kinetics of Tomato Slices in a Forced-Convective Solar Tunnel Dryer

DOI: 10.4236/jsbs.2019.92005, PP. 64-78

Keywords: Solar Dryer, Tomato, Air Velocity, Modeling, Diffusivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this work is to analyse the extent to which a change in the drying air velocity may affect the drying kinetics of tomato in a forced-convective solar tunnel dryer. 2 m?s?1 (V1) and 3 m?s?1 (V2) air speeds were applied in similar drying air temperature and humidity conditions. Main drying constants calculated included the drying rate, the drying time and the effective water diffusivity based on the derivative form of the Fick’s second law of diffusion. Henderson and Pabis Model and Page Model were used to describe the drying kinetics of tomato. We found that solar drying of tomato occurred in both constant and falling-rate phases. The Page Model appeared to give a better description of tomato drying in a forced-convective solar tunnel dryer. At t = 800 min, the drying rate was approximately 0.0023 kg of water/kg dry matter when drying air velocity was at 2 m/s. At the same moment, the drying rate was higher than 0.0032 kg of water/kg dry matter when the drying air velocity was 3 m/s. As per the effective water diffusivity, its values changed from 2.918E?09 m2?s?1 to 3.921E?09 m2?s?1 when drying air velocity was at 2 and 3 m?s?1 respectively, which is equivalent to a 25% increase. The experimentations were conducted in Niamey, on the 1st and 5th of January 2019 for V2 and V1 respectively. For both two experiments, the starting time was 9:30 local time.

References

[1]  Dorouzi, M., Mortezapour, H., Akhavan, H.-R. and Moghaddam, A.G. (2018) Tomato Slices Drying in a Liquid Desiccant-Assisted Solar Dryer Coupled with a Photovoltaic-Thermal Regeneration System. Solar Energy, 162, 364-371.
https://doi.org/10.1016/j.solener.2018.01.025
[2]  FAO (2019) Niger—Production Alimentaire: Tomates. Perspectives Monde, Université de Sherbrooke, Lettreset Sciences Humaines, Ecole de Politique Appliquée.
http://perspective.usherbrooke.ca/bilan/servlet/BMTendanceStatPays?langue=fr&codePays=NER&codeStat=RSA.FAO.Tomatoes&codeStat2=x
[3]  FAO (2015) SAVE FOOD: Global Initiative on Food Loss and Waste Reduction. Food and Agriculture Organization of the United Nations (FAO), Vialedelle Terme di Caracalla 00153, Rome, Italy.
[4]  Troger, K., Henselb, O. and Burkert, A. (2007) Conservation of Onion and Tomato in Niger—Assessment of Post-Harvest Losses and Drying Methods. Conference on International Agricultural Research for Development, University of Kassel-Witzenhausen and University of Gottingen, 9-11 October 2007.
[5]  Kemp, I.C., et al. (2001) Methods for Processing Experimental Drying Kinetics Data. Drying Technology, 19, 15-34.
https://doi.org/10.1081/DRT-100001350
[6]  Steinfeld, A. and Segal, I. (1986). A Simulation Model for Solar Thin Layer Drying Process. Drying Technology, 4, 535-554.
https://doi.org/10.1080/07373938608916349
[7]  Nadeau, J.P. (1995) Séchage: des processus physiques aux processus industriels. Tec & Doc Lavoisier, Cachan.
[8]  Bonazzi, C. and Bimbenet, J.-J. (2003) Séchage des produitsalimentaires: Principes. Institut national agronomique de Paris-Grignon, école nationale supérieure des industries agricoles et alimentaires (ENSIA).
[9]  Ekechukwu, O.V. (1995) Drying Principles and Theory: An Overview. University of Nigeria and the International Centre for Theoretical Physics, Trieste, Italy.
[10]  Luikov, A.V. (1966) Heat and Mass Transfer in Capillary-Porous Bodies. Pergamon Press, London.
https://doi.org/10.1016/B978-1-4832-0065-1.50010-6
[11]  Dissa, A.O. (2007) Séchage Convectif et solaire de la mangue (Mangifera Indica L.): Caractérisation expérimentale, modélisation et simulation du procédé telecharger. Editions Universitaires Européennes.
[12]  Henderson, S.M. and Pabis, S. (1961) Grain Drying Theory II: Temperature Effects on Drying Coefficients. Journal of Agricultural Engineering Research, 6, 169-174.
[13]  Page, C. (1949) Factors Influencing the Maximum Rates of Air-Drying of Shelled Corn in Thin Layer. Unpublished M.S. Thesis, Purdue University, Lafayette, IN.
[14]  Crank, J. (1975) Mathematics of Diffusions. 2nd Edition, Oxford University Press, London.
[15]  Villa-Corrales, L., Flores-Prieto, J.J., Xamán-Villasenor, J.P. and García-Hernández, E. (2010) Numerical and Experimental Analysis of Heat and Moisture Transfer during Drying of Ataulfo Mango. Journal of Food Engineering, 98, 198-206.
[16]  RECA (2016) La tomate au Niger. Présentation préparée par le RECA.
[17]  Ahouannou, C., Jannot, Y., Lips, B. and Lallemand, A. (2000) CaractérisationetModélisation du Séchage de trios Produits tropicaux: Manioc, gingembre et gombo. Sciences de Aliments, 20, 413-422.
https://doi.org/10.3166/sda.20.413-432
[18]  Krischer, O. (1963) Die Wissenschaftlichen Grundlagen der Trocknungstechnik. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-662-26011-1
[19]  Samimi-Akhijahani, H. and Arabhosseini, A. (2018) Accelerating Drying Process of Tomato Slices in a PV-Assisted Solar Dryer Using a Sun Tracking System. Renewable Energy, 123, 428-438.
https://doi.org/10.1016/j.renene.2018.02.056
[20]  Sacilik, K., Keskin, R. and Elicin, A.K. (2005) Mathematical Modelling of Solar Tunnel Drying of Thin Layer Organic Tomato. Journal of Food Engineering, 73, 231-238.
[21]  Doymaz, I. (2006) Air-Drying Characteristics of Tomatoes. Journal of Food Engineering, 78, 1291-1297.
https://www.elsevier.com/locate/jfoodeng
[22]  Reyes, A., Mahn, A., Huenulaf, P. and González, T. (2014) Tomato Dehydration in a Hybrid-Solar Dryer. Journal of Chemical Engineering & Process Technology, 5, 4.
https://doi.org/10.4172/2157-7048.1000196
[23]  Gaware, T.J., Sutar, N. and Thorat, B.N. (2010) Drying of Tomato Using Different Methods: Comparison of Dehydration and Rehydration Kinetics. Drying Technology, 28, 651-658.
https://doi.org/10.1080/07373931003788759
[24]  Charreau, A. and Cavaillé, R. (1995) Séchage, Théorie et calculs. Techniques de l’Ingénieur, traité Génie des procédés.
[25]  Yagcioglu, A., Demir, V. and Gunhan, T. (2007) Effective Moisture Diffusivity Estimation from Drying Data. Tarim Makinalari Bilimi Dergisi, 3, 249-256.
[26]  Zogzas, N.P. and Maroulis, Z.B. (1996) Effective Moisture Diffusivity Estimation from Drying Data: A Comparison between Various Methods of Analysis. Drying Technology, 14, 1543-1573.
https://doi.org/10.1080/07373939608917163
[27]  Lewis, W.K. (1921) The Rate of Drying of Solid Materials. Journal of Industrial and Engineering Chemistry, 13, 427-432.
https://doi.org/10.1021/ie50137a021
[28]  Ben Mariem, S. and Ben Mabrouk, S. (2014) Drying Characteristics of Tomato Slices and Mathematical Modeling. International Journal of Energy Engineering, 4, 17-24.
[29]  Madamba, P.S., Driscoll, R.H. and Buckle, K.A. (1996) The Thin-Layer Drying Characteristics of Garlic Slices. Journal of Food Engineering, 29, 75-97.
https://doi.org/10.1016/0260-8774(95)00062-3
[30]  Erbay, Z. and Icier, F. (2010) A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50, 441-464.
[31]  Barati, E. and Esfahani, J.A. (2011) A New Solution Approach for Simultaneous Heat and Mass Transfer during Convective Drying of Mango. Journal of Food Engineering, 102, 302-309.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413